Synlett 2013; 24(1): 97-101
DOI: 10.1055/s-0032-1317675
letter
© Georg Thieme Verlag Stuttgart · New York

The First I2-Promoted Efficient Aminoacetylation of Activated Aziridines in Ionic Liquid

Vijai K. Rai*
a   Department of Applied Chemistry, Institute of Technology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
b   School of Biology and Chemistry, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir 182 320, India   Fax: +91(7752)260148   Email: vijaikrai@hotmail.com
,
Nihar Sharma
b   School of Biology and Chemistry, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir 182 320, India   Fax: +91(7752)260148   Email: vijaikrai@hotmail.com
,
Anil Kumar
b   School of Biology and Chemistry, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir 182 320, India   Fax: +91(7752)260148   Email: vijaikrai@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 27 October 2012

Accepted after revision: 29 October 2012

Publication Date:
04 December 2012 (online)


Abstract

A novel and efficient aminoacetylation of aziridines is reported. Herein, 2-phenyl-1,3-oxazolan-5-one with tosylaziridines affords 3-(N-substituted)aminopyrrolidin-2-ones via regioselective terminal aziridine opening–aminoacetylative cyclization cascades. The reaction is performed using [bmim]OH/molecular iodine as a new catalyst system where ionic liquid [bmim]OH also works as reaction media and proceeds via an isolable intermediate. After isolation of the product, the ionic liquid, [bmim]OH can be easily recycled for further use without any loss of efficiency. No byproduct formation, operational simplicity, ambient temperature, high yield, and excellent diastereoselectivity are salient features of the present synthetic protocol.

 
  • References and Notes

    • 1a Gabriel S. Ber. Dtsch. Chem. Ges. 1888; 21: 1049
    • 1b Tanner D. Angew. Chem., Int. Ed. Engl. 1994; 33: 599
    • 1c Aziridines and Epoxides in Organic Synthesis. Yudin AK. Wiley-VCH; Weinheim: 2006
    • 1d Muller P, Fruit C. Chem. Rev. 2003; 103: 2905
    • 1e Hu XE. Tetrahedron 2004; 60: 2701
    • 2a Hu XE. Tetrahedron 2004; 60: 2701
    • 2b Sweeney JB. Chem. Soc. Rev. 2002; 31: 247
    • 2c Grahm MA, Wadsworth AH, Thornton-Pett M, Rayner CM. Chem. Commun. 2001; 966
    • 2d Watson ID. G, Yu L, Yudin AK. Acc. Chem. Res. 2006; 39: 194
    • 2e Watson ID. G, Yudin AK. J. Org. Chem. 2003; 68: 5160
    • 3a Wang Z, Cui Y.-T, Xu Z.-B, Qu J. J. Org. Chem. 2008; 73: 2270
    • 3b Minakata S, Hotta T, Oderaotoshi Y, Komatsu M. J. Org. Chem. 2006; 71: 7471
    • 3c Lu P. Tetrahedron 2010; 66: 2549
    • 3d Garima VP. S, Yadav LD. S. Green Chem. 2010; 12: 1460
    • 3e Minakata S, Kano D, Oderaotoshi Y, Komatsu M. Angew. Chem. Int. Ed. 2004; 43: 79
    • 3f Vicario JL, Badía D, Carrillo L. J. Org. Chem. 2001; 66: 5801
    • 4a Khuong-Huu F, Monseur X, Ratle G, Lukacs G, Goutarel R. Tetrahedron Lett. 1973; 14: 1757
    • 4b Chiaroni A, Riche C, Tchissambou L, Khuong-Huu F. J. Chem. Res., Synop. 1981; 182
    • 4c Yang M.-H, Cao Y.-H, Li W.-X. Yaoxue Xuebao 1987; 22: 33
    • 4d Xu L, Liu S.-L, Zhang J.-T. Chirality 2005; 17: 239
    • 4e Yu L, Liu G. Zhongguo Yaoxue Zazhi 2000; 35: 446
    • 4f Liu Y, Shi CZ, Zhang JT. Yaoxue Xuebao 1991; 26: 166
    • 5a Yang D, Lian G.-Y, Yang H.-F, Yu J.-D, Zhang D.-W, Gao X. J. Org. Chem. 2009; 74: 8610
    • 5b Duan XJ, Li XM, Wang BG. J. Nat. Prod. 2007; 70: 1210
    • 5c Donohue SR, Krushinski JH, Pike VW, Chernet E, Phebus L, Chesterfield AK, Felder CC, Halldin C, Schaus JM. J. Med. Chem. 2008; 51: 5833
    • 5d Kulig K, Sapa J, Nowaczyk A, Filipek B, Malawska B. Eur. J. Med. Chem. 2009; 3994
    • 5e Chang T, Hattori M, Sheu C. WO 2009094807-A1, 2009
    • 5f Ngo VX, Old DW. WO 2009055289-A2, 2009
    • 5g Hook D, Ruch T, Riss B, Wietfeld B, Sedelmeier G, Napp M, Baenziger M, Hawker S, Ciszewski L, Waykole LM. WO 2008083967-A2, 2008
    • 5h Bush JK, Hansen MM, Li R, Mabry TE, Snyder NJ, Wallace OB, Xu Y. WO 2007127688-A2, 2007
    • 5i Kenda B, Quesnel Y, Ates A, Michel P, Turet L, Mercier J. WO 2006128692-A2, 2006
    • 6a Kralj D, Novak A, Dahmann G, Grošelj U, Meden A, Svete J. J. Comb. Chem. 2008; 10: 664
    • 6b Bagnoli L, Cacchi S, Fabrizi G, Goggiamani A, Scarponi C, Tiecco M. J. Org. Chem. 2010; 75: 2134
  • 7 Parsons AF. Tetrahedron 1996; 52: 4149 ; and references cited therein
    • 8a Biggs-Houck JE, Davis RL, Wei J, Mercado BQ, Olmstead MM, Tantillo DJ, Shaw JT. J. Org. Chem. 2012; 77: 160
    • 8b Jakubec P, Cockfield DM, Dixon DJ. J. Am. Chem. Soc. 2009; 131: 16632
  • 9 Elford TG, Lesanko AU.-L, Pascale GD, Wright GD, Hall DG. J. Comb. Chem. 2009; 11: 155
  • 10 Alcaide B, Almendros P, Cabrero G, Ruiz MP. Org. Lett. 2005; 7: 3981
  • 11 Yang L, Zheng Q.-Y, Wang D.-X, Huang Z.-T, Wang M.-X. Org. Lett. 2008; 10: 2461
  • 12 Pelletier SM.-C, Ray PC, Dixon DJ. Org. Lett. 2009; 11: 4512
  • 13 Mapes CM, Mani NS. Org. Process Res. Dev. 2007; 11: 482
  • 14 Sell MS, Klein WR, Rieke RD. J. Org. Chem. 1995; 60: 1077
  • 15 Soloshonok VA, Cai C, Hruby VJ. J. Org. Chem. 2000; 65: 6688
  • 16 Garcia AL. L, Carpes MJ. S, de Oca AC. B. M, dos Santos MA. G, Santana CC, Correia CR. D. J. Org. Chem. 2005; 70: 1050
  • 17 Krawczyk H, Albrecht Ł, Wojciechowski J, Wolf WM, Krajewska U, Różalski M. Tetrahedron 2008; 64: 6307
  • 18 Xie C, Han D, Hu Y, Liu J, Xie T. Tetrahedron Lett. 2010; 51: 5238
  • 19 Basavaiah D, Rao JS. Tetrahedron Lett. 2004; 45: 1621
  • 20 Leśniak S, Pasternak B. Tetrahedron Lett. 2005; 46: 3093
  • 21 Leśniak S, Nazarski RB, Pasternak B. Tetrahedron 2009; 65: 6364
    • 22a Ghorai MK, Tiwari DP. J. Org. Chem. 2010; 75: 6173
    • 22b Bisol TB, Bortoluzzi AJ, Sá MM. J. Org. Chem. 2011; 948
    • 22c Hoang CT, Bouillére F, Johannesen S, Zulauf A, Panel C, Pouilhés A, Gori D, Alezra V, Kouklovsky C. J. Org. Chem. 2009; 74: 4177
    • 22d Rai VK, Rai PK, Bajaj S, Kumar A. Green Chem. 2011; 13: 1217
  • 23 Chowdhury S, Mohan RS, Scott JL. Tetrahedron 2007; 63: 2363
  • 24 Bao W, Wang Z. Green Chem. 2006; 8: 1028
  • 25 Zhao D, Wu M, Kou Y, Min E. Catal. Today 2002; 74: 157
  • 26 Dupont J, de Souza RF, Suarez PA. Z. Chem. Rev. 2002; 102: 3667
  • 27 Qiao K, Yakoyama C. Chem. Lett. 2004; 33: 472
  • 28 Sun W, Xia C.-G, Wang H.-W. Tetrahedron Lett. 2003; 44: 2409
  • 29 Kamal A, Chouhan G. Tetrahedron Lett. 2005; 46: 1489
  • 30 Earle MJ, Ktdare SP, Seddon KR. Org. Lett. 2004; 6: 707
    • 31a Benz G In Comprehensive Organic Synthesis . Vol. 6. Trost BM, Fleming I. Chap. 2.3 Pergamon Press; Oxford: 1991
    • 31b Albericio F, Chinchilla R, Dodsworth DJ, Najera C. Org. Prep. Proced. Int. 2001; 33: 203
    • 32a Rai VK, Tiku P, Kumar A. Synth. Commun. 2012; 42: 1489
    • 32b Rai VK, Singh S, Singh P, Yadav LD. S. Synthesis 2010; 4051
    • 32c Yadav LD. S, Singh S, Rai VK. Green Chem. 2009; 11: 878
    • 32d Yadav LD. S, Rai VK. Tetrahedron Lett. 2006; 47: 395
  • 33 General Procedure for the Synthesis of γ-Lactams 3 A mixture of 2-phenyl-1,3-oxazol-5-one (1, 2.0 mmol), tosylaziridine 2 (2.0 mmol), and a catalytic amount of I2 (0.2 mmol) in [bmim]OH (5 mL) was stirred at r.t. for 5–6 h. After completion of the reaction as indicated by TLC, H2O (10 mL) was added, and the mixture was extracted thrice with EtOAc (10 mL). The combined organic layer was washed with brine (10 mL), dried over anhyd Na2SO4, filtered, and evaporated under reduced pressure to afford an analytically pure sample of a single diastereomers 3 (Table 2). After isolation of the products, the remaining aqueous layer containing the ionic liquid was washed with hexane and dried in vacuum resulting in recycled ionic liquid, [bmim]OH (Table 3). The structure of the product 3 was confirmed by their elemental and spectral analyses. Characterization Data of Representative Compounds 3 Compound 3a: colorless solid, mp 103–104 °C. IR (KBr): νmax = 3348, 3031, 2938, 1746, 1701, 1605, 1583, 1451 cm–1. 1H NMR (400 MHz, 3): d = 2.31 (s, 3 H), 2.81 (ddd, J = 10.8, 7.1, 4.3 Hz, 1 H), 2.90 (ddd, J = 10.8, 8.9, 6.5 Hz, 1 H), 4.61 (ddd, J = 8.9, 7.5, 4.3 Hz, 1 H), 4.89 (dd, J = 7.1, 6.5 Hz, 1 H), 7.21–7.49 (m, 10 H), 7.85–7.98 (m, 4 H), 8.12 (br, exch, 1 H). 13C NMR (100 MHz 3): d = 25.1, 33.7, 43.3, 53.5, 127.1, 127.9, 128.6, 129.3, 130.0, 130.7, 132.5, 133.2, 133.8, 134.7, 139.2, 140.1, 171.0, 178.3. MS (EI): m/z = 434 [M+]. Anal. Calcd for C24H22N2O4S: C, 66.34; H, 5.10; N, 6.45. Found: C, 66.59; H, 5.31; N, 6.27 Compound 3e: colorless solid, mp 151–153 °C. IR (KBr): νmax = 3355, 3032, 2925, 1741, 1701, 1596, 1577, 1451 cm–1. 1H NMR (400 MHz, CDCl3): d = 2.28 (s, 3 H), 2.78 (ddd, J = 10.7, 7.4, 4.8 Hz, 1 H), 2.90 (ddd, J = 10.7, 9.0, 6.6 Hz, 1 H), 4.63 (ddd, J = 9.0, 7.5, 4.8 Hz, 1 H), 4.85 (dd, J = 7.4, 6.6 Hz, 1 H), 7.26–7.53 (m, 9 H), 7.88–7.91 (m, 4 H), 8.15 (br, exch, 1 H). 13C NMR (100 MHz, CDCl3): d = 25.5, 33.2, 43.8, 54.0, 127.2, 127.9, 128.7, 129.5, 130.1, 130.8, 131.4, 132.0, 132.7, 133.3, 134.0, 138.9, 171.2, 178.2. MS (EI): m/z = 468, 470 [M+, M+ + 2]. Anal. Calcd for C24H21ClN2O4S: C, 61.47; H, 4.51; N, 5.97. Found: C, 61.69; H, 4.13; N, 6.19. Compound 3i: colorless solid, mp 135–137 °C. IR (KBr): νmax = 3350, 3029, 2932, 1743, 1702, 1601, 1578, 1445 cm–1. 1H NMR (400 MHz, CDCl3): d = 2.28 (s, 3 H), 2.82 (ddd, J = 10.9, 7.1, 4.3 Hz, 1 H), 2.92 (ddd, J = 10.9, 8.9, 6.7 Hz, 1 H), 4.66 (ddd, J = 8.9, 7.5, 4.3 Hz, 1 H), 4.86 (dd, J = 7.1, 6.7 Hz, 1 H), 7.19–7.55 (m, 9 H), 7.79–7.92 (m, 4 H), 8.17 (br, exch, 1 H). 13C NMR (100 MHz, CDCl3): d = 25.6, 33.1, 43.5, 53.5, 127.7, 128.4, 129.0, 129.6, 130.3, 131.1, 131.8, 132.5, 133.2, 134.0, 134.8, 140.1, 171.0, 178.8. MS (EI): m/z = 452 [M+]. Anal. Calcd for C24H21FN2O4S: C, 63.70; H, 4.68; N, 6.19. Found: C, 63.89; H, 4.91; N, 5.87.
  • 34 Brace NO. J. Fluorine Chem. 2003; 123: 237
  • 35 Isolation of 4a (Ar = Ph), 4e (Ar = 4-ClC6H4), and 4i (Ar = 4-FC6H4) and Their Conversion into the Corresponding Pyrrolidin-2-ones 3a, 3e, and 3i The procedure followed was the same as described above for the synthesis of 3, except that the reaction time in this case was only 2 h instead of 5–6 h used for 3. To obtain analytically pure samples of 3a, 3e, and 3i and to assign stereochemistry the same procedure was adopted as described for 3a, 3e, and 3i. Finally, these intermediates were stirred at r.t. for the next 3–4 h to give the corresponding cyclized products 3a, 3e, and 3i respectively. Characterization Data of Representative Compound Compound 4a: IR (KBr): νmax = 3345, 3030, 2930, 1708, 1605, 1581, 1455 cm–1. 1H NMR (400 MHz, 3): d = 2.23 (s, 3 H), 2.51–2.53 (m, 2 H), 3.81 (m, 1 H), 4.01 (dd, J = 7.9, 3.8 Hz, 1 H), 5.29 (br, exch, 1 H), 7.21–7.59 (m, 12 H), 7.85–7.81 (m, 2 H). 13C NMR (100 MHz, 3): d = 25.1, 37.2, 45.5, 64.2, 126.7, 127.5, 128.2, 129.0, 129.7, 130.3, 132.0, 132.6, 133.3, 134.0, 135.2, 138.5, 169.8, 177.2. MS (EI): m/z = 434 [M+]. Anal. Calcd for C24H22N2O4S: C, 66.34; H, 5.10; N, 6.45. Found: C, 66.63; H, 4.88; N, 6.19.
    • 36a Wang Z, Cui Y.-T, Xu Z.-B, Qu J. J. Org. Chem. 2008; 73: 2270
    • 36b Minakata S, Hotta T, Oderaotoshi Y, Komatsu M. J. Org. Chem. 2006; 71: 7471
    • 36c Lu P. Tetrahedron 2010; 66: 2549
    • 36d Garima VP. S, Yadav LD. S. Green Chem. 2010; 12: 1460
    • 36e Minakata S, Kano D, Oderaotoshi Y, Komatsu M. Angew. Chem. Int. Ed. 2004; 43: 79