Synlett 2013; 24(1): 135-136
DOI: 10.1055/s-0032-1317530
spotlight
© Georg Thieme Verlag Stuttgart · New York

The Mukaiyama Reagent: An Efficient Condensation Agent

Irina Novosjolova
Faculty of Material Science and Applied Chemistry, Riga Technical University, Azenes Str. 14/24, LV-1007 Riga, Latvia   Email: irina.novosjolova@gmail.com
› Author Affiliations
Further Information

Publication History

Publication Date:
04 December 2012 (online)

Introduction

The Mukaiyama reagent (2-chloro-1-methylpyridinium iodide, CMPI) is one of the most valuable reagents for ­activation of hydroxyl groups of carboxylic acids and ­alcohols.[ 1 ] It is a pale yellow crystalline solid which is stable at room temperature in closed containers under normal storage and handling conditions. CMPI is commercially available, but can be easily synthesized from 2-chloro­pyridine and methyliodide.[2a] [b] [c] [d]

Zoom Image
Scheme 1

It is widely used for the synthesis of esters,[ 3 ] lactones,[ 4 ] ­amides,[ 5 ] lactams,[ 6 ] and ketenes[ 7 ] from the corresponding carboxylic acids, as well for obtaining carbodiimides from thioureas[ 8 ] and thiocyanates from alcohols.[ 9 ] CMPI was introduced as an useful reagent for the synthesis of carboxylic esters by Teruaki Mukaiyama in 1975,[ 10 ] after that the miscellaneous N-alkyl-2-halopyridinium salts had been developed as activating agents.[ 1 ] Nowadays, several polymer-supported CMPI analogues have been used for the synthesis of esters and amides due to user-friendly purification procedures.[ 11 ] The reagent analogues are also valuable for peptide synthesis.[ 12 ]

 
  • References

  • 1 Mukaiyama T. Angew. Chem., Int. Ed. Engl. 1979; 18: 707
  • 3 Yamano Y, Tsuboi K, Hozaki Y, Takahashi K, Jin X.-H, Ueda N, Wada A. Bioorg. Med. Chem. 2012; 20: 3658
  • 4 Mukaiyama T, Usui M, Saigo K. Chem. Lett. 1976; 49
  • 5 Kulikov OV, Incarvito C, Hamilton AD. Tetrahedron Lett. 2011; 52: 3705
  • 6 Huang H, Iwasawa N, Mukaiyama T. Chem. Lett. 1984; 1465
  • 7 Funk RL, Abelman MM, Jellison KM. Synlett 1989; 36
  • 8 Kong KH, Tan CK, Lin X, Lam Y. Chem. Eur. J. 2012; 18: 1476
  • 9 Mokhtari B, Azadi R, Mardani E. Tetrahedron Lett. 2012; 53: 491
  • 10 Mukaiyama T, Shimada E, Saigo K. Chem. Lett. 1975; 1045
  • 11 Crosignani S, Gonzalez J, Swinnen D. Org. Lett. 2004; 6: 4579
  • 12 Li P, Xu J. Tetrahedron 2000; 56: 8119
  • 13 Mazón A, Nájera C, Yus M, Heumann A. Tetrahedron: Asymmetry 1992; 3: 1455
  • 14 Motozaki T, Sawamura K, Suzuki A, Yoshida K, Ohara A, Munakata R, Takao K, Tadano K. Org. Lett. 2005; 7: 2265
  • 15 Punthasee P, Vanitcha A, Wacharasindhu S. Tetrahedron Lett. 2010; 51: 1713
  • 16 Vandromme L, Teulade-Fichou M.-P. Synlett 2006; 3423
  • 17 Barghash RF, Massi A, Dondoni A. Org. Biomol. Chem. 2009; 7: 3319
    • 18a Matsugi M, Hasegawa M, Sadachika D, Okamoto S, Tomioka M, Ikeya Y, Masuyama A, Mori Y. Tetrahedron Lett. 2007; 48: 4147
    • 18b Matsugi M, Suganuma M, Yoshida S, Kunda Y, Hagihara K. Tetrahedron Lett. 2008; 49: 6573
    • 18c Matsugi M, Nakamura S, Kunda Y, Sugiyama Y, Shioiri T. Tetrahedron Lett. 2010; 51: 133