Synlett 2012; 23(19): 2867-2868
DOI: 10.1055/s-0032-1317476
© Georg Thieme Verlag Stuttgart · New York

Mercury(II) Acetate

Milan Dejmek
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic   Email:
› Author Affiliations
Further Information

Publication History

Publication Date:
07 November 2012 (online)


Mercury(II) acetate is a commercially available reagent which can be prepared by the reaction of elemental mercury with peroxyacetic acid.[ 1 ] The standard use of this reagent is the textbook oxymercuration–demercuration reaction, an electrophilic addition in which mercury(II) acetate attacks a double bond forming a mercury–olefin complex, followed by nucleophilic ring opening with water and subsequent reductive demercuration with sodium borohydride.[ 2 ] The reaction proceeds in accordance with Markovnikov‘s rule, since the nucleophilic reagent attacks the higher substituted carbon atom to form the more stable carbocation intermediate. This reaction is also an anti-addition: the nucleophilic reagent attacks the double bond–mercury complex from the side opposite to the molecule.

Not only water, but also other nucleophiles may be used to attack this complex, which opens up an arena for other potential uses of mercury(II) acetate including azidomercuration or formation of ethers and secondary amines. Although mercury(II) salts are generally considered to be very toxic (ingestion of as little as 1 g can be fatal),3 the non-volatile, crystalline nature of mercury(II) acetate, together with its insolubility in lipids, assures safe manipulations with the reagent when handled in a fume-hood using standard safety precautions.��

Zoom Image
Scheme 1 Standard oxymercuration–demercuration procedure
  • References

    • 1a Greenspan FP. US 2661360, Chem. Abstr. 1953, 48, 23243
    • 1b MacKellar DG. US 2873289, Chem. Abstr. 1959, 53, 58951
    • 2a Janusz JM, Young PA, Scherz MW, Enzweiler K, Wu LI, Gan L, Pikul S, McDow-Dunham KL, Johnson CR, Senanayake CB, Kellstein DE, Green SA, Tulich JL, Rosario-Jansen T, Magrisso IJ, Wehmeyer KR, Kuhlenbeck DL, Eichhold TH, Dobson RL. M. J. Med. Chem. 1998; 41: 1124
    • 2b Tomita T, Kita Y, Kitamura T, Sato Y, Mori M. Tetrahedron 2006; 62: 10518
  • 3 Clarkson TW, Magos L. Crit. Rev. Toxicol. 2006; 36: 609
    • 4a Alibés R, March P, Figueredo M, Font J, Racamonde M, Parella T. Org. Lett. 2004; 6: 1449
    • 4b Yates P, Kaldas M. Can. J. Chem. 1992; 70: 1492
    • 4c Ghosh AK, Takayama J. Tetrahedron Lett. 2008; 49: 3409
    • 5a Hřebabecký H, Dejmek M, Šála M, Mertlíkova-Kaiserová H, Dračínský M, Nencka R, Leyssen P, Neyts J. Tetrahedron 2012; 68: 3195
    • 5b Grunewald GL, Reitz TJ, Hallett A. J. Med. Chem. 1980; 23: 614
    • 6a Wirsching J, Voss J, Adiwidjaja G, Giesler A, Kopf J. Eur. J. Org. Chem. 2001; 1077
    • 6b Brånalt J, Kvarnström I, Niklasson G, Svensson SC. T, Classon B, Samuelsson B. J. Org. Chem. 1994; 59: 1783
    • 6c Haraguchi K, Takahashi H, Shiina N, Horii C, Yoshimura Y, Nishikawa A, Sasakura E, Nakamura KT, Tanaka H. J. Org. Chem. 2002; 67: 5919
    • 7a Fanghänel E, Ullrich A, Wagner C. Eur. J. Org. Chem. 1998; 1577
    • 7b Marbella L, Serli-Mitasev B, Basu P. Angew. Chem. Int. Ed. 2009; 48: 3996
    • 8a Chen C, Luh T. Tetrahedron Lett. 2009; 50: 3263
    • 8b Tseng J, Chen J, Luh T. Synlett 2006; 8: 1209
    • 9a Mohapatra DK, Naidu PR, Reddy DS, Nayak S, Mohapatra S. Eur. J. Org. Chem. 2010; 6263
    • 9b Gharpure SJ, Porwal SK. Tetrahedron 2011; 67: 1216
    • 10a Arbour M, Roy S, Godbout C, Spino C. J. Org. Chem. 2009; 74: 3806
    • 10b Srikrishna A, Yelamaggad CV, Kumar PP. J. Chem. Soc., Perkin Trans. 1 1999; 2877