Synlett 2012; 23(15): 2223-2226
DOI: 10.1055/s-0032-1317079
letter
© Georg Thieme Verlag Stuttgart · New York

Facile and Mild Displacement of Nitrite Ions in Electron-Deficient Nitroarenes by Alkyl or Aryl Thiols in the Presence of Magnesium Methoxide as a Solid Base Catalyst

Hossein Naeimi*
Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317, Iran, Fax: +98(361)5912397   Email: naeimi@kashanu.ac.ir
,
Mohsen Moradian
Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317, Iran, Fax: +98(361)5912397   Email: naeimi@kashanu.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 13 June 2012

Accepted after revision: 19 July 2012

Publication Date:
31 August 2012 (online)


Abstract

The nucleophilic aromatic substitution reaction (SNAr) between nitroarenes (having electron-withdrawing groups in the ­ortho or para position), and alkyl- or arylthiols using magnesium methoxide as a solid base catalyst is described. This method leads to the creation of a series of valuable compounds from arylsulfides via nucleophilic displacement of the nitro group with the sulfanyl moiety. This facile method is a synthetically useful process, and it is significant that the nucleophile is promoted effectively by magnesium methoxide as a base in N,N-dimethylformamide. The displacement of then nitrite ion occurred in the presence of a variety of functional groups that caused an electron-deficient ring such as aldehyde, ketone, ester, cyano, and nitro groups.

Supporting Information

 
  • References

    • 1a Burnett JF, Zahler RE. Chem. Rev. 1951; 49: 273
    • 1b Bunnett JF, Morath RJ. J. Am. Chem. Soc. 1955; 77: 5051
    • 1c Pietra F, Del Cima F. J. Org. Chem. 1968; 33: 1411
    • 1d Ross SD, Finkelstein M. J. Am. Chem. Soc. 1963; 85: 2603
    • 1e Burdon J, Fisher D, King D, Tatlow JC. Chem. Commun. 1965; 65
    • 1f DeRoy PL, Surprenant S, Bertrand-Laperle M, Yoakim C. Org. Lett. 2007; 9: 2741
  • 2 Ingold CK. Structure and Mechanism in Organic Chemistry . Cornell University Press; Ithaca (NY): 1963
    • 3a Beck JR. Tetrahedron 1978; 34: 2057
    • 3b Penney JM. Tetrahedron Lett. 2004; 45: 2667
    • 3c Kondoh A, Yorimitsu H, Oshima K. Tetrahedron 2006; 62: 2357
    • 4a Reinders W, Ringer WE. Recl. Trav. Chim. Pays-Bas 1899; 18: 326
    • 4b Adams R, Ferretti A. J. Am. Chem. Soc. 1959; 81: 4927
    • 4c Bunnett JF, Garbisch EW, Pruitt KM. J. Am. Chem. Soc. 1957; 79: 385
    • 4d Bolto B, Miller J. Aust. J. Chem. 1956; 9: 74
    • 4e Suhr H. Chem. Ber. 1964; 97: 3268
  • 5 Baumann JB. J. Org. Chem. 1971; 36: 396
  • 6 Beck JR, Yahner JA. J. Org. Chem. 1974; 39: 3440
  • 7 Radlmann E, Schmidt W, Nischk GE. Makromol. Chem. 1969; 130: 45
  • 8 Kornblum N, Cheng L, Kerber RC, Kestner MM, Newton BN, Pinnick HW, Smith RG, Wade PA. J. Org. Chem. 1976; 41: 1560
    • 9a Isobe H, Mashima H, Yorimitsu H, Nakamura E. Org. Lett. 2003; 5: 4461
    • 9b Wang Q, Lin T, Tang L, Johnson JE, Finn MG. Angew. Chem. Int. Ed. 2002; 41: 459