Synlett 2013; 24(8): 947-950
DOI: 10.1055/s-0032-1316910
letter
© Georg Thieme Verlag Stuttgart · New York

Magnetically Recoverable Osmium Catalysts with Osmium–Diolate Esters for Dihydroxylation of Olefins

Ken-ichi Fujita*
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan   Fax: +81(29)8614577   Email: k.fujita@aist.go.jp
,
Satoshi Umeki
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan   Fax: +81(29)8614577   Email: k.fujita@aist.go.jp
,
Hiroyuki Yasuda
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan   Fax: +81(29)8614577   Email: k.fujita@aist.go.jp
› Author Affiliations
Further Information

Publication History

Received: 26 February 2013

Accepted after revision: 18 March 2013

Publication Date:
11 April 2013 (eFirst)

Abstract

We prepared magnetically recoverable osmium catalysts with stable osmium–diolate esters and applied them to the dihydroxylation of olefins. By employing 2 mol% of the magnetic osmium catalyst, the dihydroxylation reaction proceeded smoothly to provide the corresponding vicinal diol with a low level of osmium leaching. After completion of the dihydroxylation, the osmium catalyst was readily recovered by use of an external magnet and was recycled up to five times.

 
  • References and Notes

    • 1a Kobayashi S, Sugiura M. Adv. Synth. Catal. 2006; 348: 1496
    • 1b Kolb HC, Van Nieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
    • 1c Schröder M. Chem. Rev. 1980; 80: 187
    • 3a Akiyama R, Matsuki N, Nomura H, Yoshida H, Yoshida T, Kobayashi S. RSC Adv. 2012; 2: 7456
    • 3b Jun B.-H, Kim J.-H, Park J, Kang H, Lee S.-H, Lee Y.-S. Synlett 2008; 2313
    • 3c Kim KJ, Choi HY, Hwang SH, Park YS, Kwueon EK, Choi DS, Song CE. Chem. Commun. 2005; 3337
    • 3d Ley SV, Ramarao C, Lee A.-L, Østergaard N, Smith SC, Shirley IM. Org. Lett. 2003; 5: 185
    • 3e Choudary BM, Chowdari NS, Jyothi K, Kantam ML. J. Am. Chem. Soc. 2002; 124: 5341
    • 3f Severeyns A, De Vos DE, Fiermans L, Verpoort F, Grobet PJ, Jacobs PA. Angew. Chem. Int. Ed. 2001; 40: 586
    • 4a Baig RB. N, Varma RS. Chem. Commun. 2013; 752
    • 4b Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J.-M. Chem. Rev. 2011; 111: 3036
    • 4c Schätz A, Reiser O, Stark WJ. Chem. Eur. J. 2010; 16: 8950
    • 4d Lu A.-H, Salabas E.-L, Schüth F. Angew. Chem. Int. Ed. 2007; 46: 1222
  • 5 Fujita K, Umeki S, Yamazaki M, Ainoya T, Tsuchimoto T, Yasuda H. Tetrahedron Lett. 2011; 52: 3137
    • 6a Liu X, Ma Z, Xing J, Liu H. J. Magn. Magn. Mater. 2004; 270: 1
    • 6b Massart R. IEEE Trans. Magn. 1981; 17: 1247
    • 7a Donohoe TJ, Callens CK. A, Thompson AL. Org. Lett. 2009; 11: 2305
    • 7b Al-Zoubi RM, Marion O, Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
  • 8 Severeyns A, De Vos DE, Jacobs PA. Green Chem. 2002; 4: 380
  • 9 General Procedure To a t-BuOH–CH2Cl2 (2:1, v/v) solution (3 mL) of the olefin (1 mmol) was successively added a magnetic osmium catalyst (0.02 mmol), NMO (1.3 mmol), and H2O (2.6 or 11 mmol) at r.t. under an argon atmosphere. After stirring of the resulting mixture, the dihydroxylation reaction was completed (monitored by TLC). A magnetic osmium catalyst was separated by magnetic decantation using an external magnet followed by washing with t-BuOH–CH2Cl2, and the recovered magnetic osmium catalyst was reused for subsequent dihydroxylation reactions.
  • 10 Compound 7a: olefin moiety 0.19 mmol/g, C18H37 group 0.41 mmol/g; compound 7b: olefin moiety 0.16 mmol/g, CH2CH2C8F17 group 0.44 mmol/g.
  • 11 Preparation of 8a OsO4 was prepared in situ by stirring a CH2Cl2–Η2Ο (5:1, v/v) solution (90 mL) of K2OsO4·2H2O (111 mg, 0.3 mmol) and NMO (703 mmol, 6 mmol) overnight at r.t. under an argon atmosphere. To the resulting solution, 7a (1.67 g, 0.316 mmol) and t-BuOH (150 mL) were added, and the mixture was vigorously stirred for 7 h at r.t. under an argon atmosphere. The obtained magnetic nanoparticles were separated by magnetic decantation using an external magnet and washed five times with t-BuOH–CH2Cl2. After drying under reduced pressure, 1.67 g of 8a was obtained as a black powder.
  • 12 Selected Data for Compound 8a Black powder. IR (KBr) 2922, 2853, 1655, 1638, 1047, 1015, 993, 571 cm–1. Anal. Found: C, 11.21; H, 1.89; N, 0.45; Os, 2.63.