Synlett 2013; 24(9): 1121-1124
DOI: 10.1055/s-0032-1316904
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Suzuki–Miyaura Reactions of 3,6,8-Tribromoquinoline: A Structural Revision

Omer A. Akrawi
a   Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany   Fax: +49(381)4986412   Email: peter.langer@uni-rostock.de
b   Department of Chemistry, College of Science, University of Mosul, Mosul, Iraq
,
Hamid H. Mohammed
a   Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany   Fax: +49(381)4986412   Email: peter.langer@uni-rostock.de
c   Department of Chemistry, College of Science, University of Al-Mustansiryah, Baghdad, Iraq
,
Peter Langer*
a   Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany   Fax: +49(381)4986412   Email: peter.langer@uni-rostock.de
d   Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
› Author Affiliations
Further Information

Publication History

Received: 11 March 2013

Accepted: 17 March 2013

Publication Date:
18 April 2013 (online)


Abstract

It was earlier reported that the bromination of 1,2,3,4-tetrahydroquinoline with NBS would give 4,6,8-tribromoquinoline. This reaction was reinvestigated, and the structure was assigned to be 3,6,8-tribromoquinoline. Suzuki–Miyaura cross-coupling reactions of this molecule allowed for a convenient synthesis of 3,6,8-triarylquinolines.

 
  • References and Notes

    • 1a Morimoto Y, Matsuda F, Shirahama H. Synlett 1991; 202
    • 1b Balasubramania M, Keay JG In Comprehensive Heterocyclic Chemistry II . Vol. 5. Katritzky AR, Rees W, Scriven EF. V. Pergamon; New York: 1996: 245
    • 1c Michael JP. Nat. Prod. Rep. 1997; 14: 605
    • 2a Markees DG, Dewey VC, Kidder GW. J. Med. Chem. 1970; 13: 324
    • 2b Campbell SF, Hardstone JD, Palmer MJ. J. Med. Chem. 1988; 31: 1031
    • 2c Maguire MP, Sheets KR, McVety K, Spada AP, Zilberstein A. J. Med. Chem. 1994; 37: 2129
    • 2d Kalluraya B, Sreenivasa S. Farmaco 1998; 53: 399
    • 2e Roma G, Braccio MD, Grossi G, Mattioli F, Ghia M. Eur. J. Med. Chem. 2000; 1021
    • 2f Chen YL, Fang K.-M, Sheu J.-Y, Hsu S.-L, Tzeng M. J. Med. Chem. 2001; 44: 2374
  • 3 Gottlieb D, Shaw PD. Antibiotics, Part II: Biosynthesis . Springer; New York: 1967
  • 4 Arcadi A, Chiarini M, Giuseppe SD, Marinelli F. Synlett 2003; 203 ; and references cited therein
    • 5a Kaneko T, Romero K, Li B, Buzon R. Bioorg. Med. Chem. Lett. 2007; 17: 5049
    • 5b Mulvihill MJ, Ji Q.-S, Coate HR, Cooke A, Dong H, Feng L, Foreman K, Rosenfeld-Franklin M, Honda A, Mak G, Mulvihill KM, Nigro AI, Connor MO, Pirrit M, Steinig AG, Siu K, Stolz KM, Sun Y, Tavares PA. R, Yao Y, Gibson NW. Bioorg. Med. Chem. 2008; 16: 1359
    • 6a Altmann K.-H, Bold G, Caravatti G, Flçrsheimer A, Guagnano V, Wartmann M. Bioorg. Med. Chem. Lett. 2000; 10: 2765
    • 6b Nomura T, Iwaki T, Narukawa Y, Uotani K, Hori T, Miwa H. Bioorg. Med. Chem. 2006; 14: 3697
  • 7 Noverty J, Collins H, Starts FW. J. Pharm. Sci. 1974; 63: 1264
    • 8a Aggarwal AK, Jenekhe SA. Macromolecules 1991; 24: 6806
    • 8b Zhang X, Shetty AS, Jenekhe SA. Macromolecules 1999; 32: 7422
    • 8c Jenekhe SA, Lu L, Alam MM. Macromolecules 2001; 34: 7315
  • 9 Jones G. In Comprehensive Heterocyclic Chemistry . Vol. 2. Katritzky AR, Rees W. Pergamon Press; New York: 1984: 395
  • 10 Hirner JJ, Zacuto MJ. Tetrahedron Lett. 2009; 50: 4989 ; and references cited therein
    • 11a Amii H, Kishikawa Y, Uneyama K. Org. Lett. 2001; 3: 1109 ; and references cited therein
    • 11b Cho S, Oh BH, Kim JS, Kim T.-J, Shim S. Chem. Commun. 2000; 1885 ; and references cited therein
    • 12a Echavarren AM, Stille JK. J. Am. Chem. Soc. 1987; 109: 5478
    • 12b Badone D, Cecchi R, Guzzi U. J. Org. Chem. 1992; 57: 6323
    • 13a Gavryushin A, Kofink M, Manolikakes G, Knochel P. Org. Lett. 2005; 7: 4871
    • 13b Gavryushin A, Kofink M, Manolikakes G, Knochel P. Tetrahedron 2006; 62: 7521
  • 14 Organ MG, Abdel-Hadi M, Avola S, Hadei N, Nasielski J, Brien JO, Valente M. Chem. Eur. J. 2007; 13: 150
  • 15 Xu L, Li B.-J, Wu Z.-H, Lu X.-Y, Guan B.-T, Wang B.-Q, Zhao K.-Q, Shi Z.-J. Org. Lett. 2010; 12: 884
  • 16 Babudri F, Cardone A, Cioffi T, Farinola GM, Naso F, Ragnib R. Synthesis 2006; 1325
    • 17a Sahu KB, Hazra A, Paira P, Saha P, Naskar S, Paira R, Banerjee S, Sahu NP, Mondal NB, Luger P, Weber M. Tetrahedron 2009; 65: 6941
    • 17b Sliman F, Desmaele D. Synthesis 2010; 619
  • 18 Eleya N, Mahal A, Hein M, Villinger A, Langer P. Adv. Synth. Catal. 2011; 353: 2761
  • 19 Sahin A, Cakmak O, Demirtas I, Okten S, Tutar A. Tetrahedron 2008; 64: 10068
  • 20 Eisch JJ. J. Org. Chem. 1962; 27: 1318
  • 21 Celik I, Akkurt M, Okten S, Cakmak O, Granda SG. Acta Crystallogr., Sect. E.: Struct. Rep. Online 2010; 66: o3133
  • 22 Synthesis of 3,6,8-Tribromoquinoline (4) To a solution of 1,2,3,4-tetrahydroquinoline (1, 0.5 g, 3.76 mmol) in dry benzene (50 mL), NBS (4.0 g, 22.5 mmol, 6 equiv), and AIBN (0.12 g, 0.75 mmol, 20 mol%) were added under an argon atmosphere, and the reaction mixture was stirred under reflux for 12 h. The reaction was monitored by TLC (EtOAc–heptanes, 0.5:9.5). After cooling, distilled H2O (5 mL) and Et3N (1 mL) were added, then the organic layer was extracted with EtOAc. The combined organic layers were dried (Na2SO4), filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc–heptanes, 10:0.1) to give 4 as a white solid (1.36 g, 98%); mp 170–172 °C. 1H NMR (300 MHz, CDCl3): δ = 7.78 (d, 1 H, J = 1.8 Hz, ArH), 8.06 (d, 1 H, J = 2.0 Hz, ArH), 8.14 (d, 1 H, J = 2.2 Hz, ArH), 8.90 (d, 1 H, J = 2.2 Hz, ArH). 13C NMR (75.5 MHz, CDCl3): δ = 119.3, 121.2, 126.0 (C), 128.7 (CH), 130.6 (C), 136.2, 136.6 (CH), 142.3 (C), 152.4 (CH). IR (KBr): ν = 3086, 3074, 3052 (w), 1588, 1579, 1568, 1540, 1504, 1488 (m), 1456 (s), 1410, 1384, 1354, 1327, 1316, 1305, 1262, 1233, 1197, 1173, 1146 (m), 1082 (br), 1071 (br), 967 (br), 924 (w), 903 (s), 894 (s), 871, 855, 814 (m), 779 (s), 680 (s), 648, 615, 594 (m), 526 (s) cm–1. GC–MS (EI, 70 eV): m/z (%) = 369 (32) [M, 81Br81Br81Br]+, 367 (97) [M, 81Br81Br79Br]+, 365 (100) [M, 79Br79Br81Br]+, 363 (34) [M, 79Br79Br79Br]+, 286 (17), 205 (22), 178 (5). HRMS (ESI-TOF/MS, 70 eV): m/z calcd for C9H5NBr3 [M + H, 79Br79Br79Br]+: 363.79666; found: 363.79681; calcd for C9H5NBr3 [M + H, 81Br 79Br79Br]+: 365.79463; found: 365.79471; calcd for C9H5NBr3 [M + H, 81Br81Br79Br]+: 367.79261; found: 367.79279; calcd for C9H5NBr3 [M + H, 81Br81Br81Br]+: 369.79064; found: 369.79081.
  • 23 General Procedure for the Suzuki–Miyaura Reactions A dioxane solution of 3,6,8-tribromoquinoline (4, 0.21 mmol), arylboronic acid (3.5 equiv), Pd(PPh3)4 (9 mol%), and K2CO3 (2 M, 2 mL) was stirred at the indicated temperature and for the indicated time under an argon atmosphere. After cooling to 20 °C, distilled H2O was added. The organic and aqueous layers were separated, and the latter was extracted with CH2Cl2. The combined organic layers were dried (Na2SO4), filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc–heptanes). 3,6,8-Triphenylquinoline (6a) Starting with 1 (75 mg, 0.21 mmol), 5a (90 mg, 0.74 mmol), Pd(PPh3)4 (21 mg, 9 mol%), K2CO3 (2 M, 2 mL), and dioxane (2 mL), 6a was isolated as a white solid (65 mg, 92%); mp 174–176 °C (EtOAc–heptanes, 0.1:10). 1H NMR (300 MHz, CDCl3): δ = 7.25–7.44 (m, 9 H, ArH), 7.59 (m, 6 H, ArH), 7.87 (d, 1 H, J = 2.0 Hz, ArH), 7.91 (d, 1 H, J = 2.0 Hz, ArH), 8.23 (d, 1 H, J = 2.3 Hz, ArH), 9.09 (d, 1 H, J = 2.3 Hz, ArH). 13C NMR (75.5 MHz, CDCl3): δ = 124.2, 126.2, 126.4, 126.5, 126.7, 127.0, 127.1 (CH), 127.7 (C), 127.9, 128.1, 128.9, 129.5 (CH), 132.4, 132.8 (C), 136.7 (CH), 138.3, 138.4, 139.1, 140.1, 143.4 (C), 148.5 (CH). IR (KBr): ν = 3101, 3053, 3029 (w), 1596, 1477, 1442, 1376, 1344 (m), 1260 (w), 1177, 1153, 1075, 1022, 973 (m), 898, 805, 757, 694 (s), 614, 574, 546 (m) cm–1. GC–MS (EI, 70 eV): m/z (%) = 356 (100) [M+], 280 (6), 178 (4). HRMS (ESI-TOF/MS, 70 eV): m/z calcd for C27H20N [M + H]+: 357.15903; found: 357.15950.