Synlett 2013; 24(8): 973-976
DOI: 10.1055/s-0032-1316903
letter
© Georg Thieme Verlag Stuttgart · New York

A Short Preparation of Pyrroloquinoxalinones via a Cascade Reaction of N-Aryl-5-alkylamino-2-nitrosoanilines with Methyl 2-Cyanoalkanoates: Unexpected Direction of Nucleophilic Substitution of Hydrogen

Magdalena Królikiewicz
a   The Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
,
Piotr Cmoch
b   Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224, Warsaw, Poland   Fax: +48(22)6326681   Email: zbigniew.wrobel@icho.edu.pl
,
Zbigniew Wróbel*
b   Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224, Warsaw, Poland   Fax: +48(22)6326681   Email: zbigniew.wrobel@icho.edu.pl
› Author Affiliations
Further Information

Publication History

Received: 18 January 2013

Accepted after revision: 17 March 2013

Publication Date:
10 April 2013 (online)


Abstract

N-Aryl-2-nitrosoanilines possessing 5-alkylamino groups undergo a bisheteroannulation reaction with anions of 2-cyanoalkanecarboxylates resulting in pyrroloquinoxalinone derivatives. The cascade reaction involves condensation of the cyanoester anions with the nitroso group, unusual nucleophilic substitution of hydrogen in the nitrosoaniline-derived intermediate with the second carbanion molecule, and double intramolecular acylation of the amino functions.

Supporting Information

 
  • References and Notes

  • 1 Nicolaou KC, Edmonds DJ, Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134
  • 4 Kwast A, Stachowska K, Trawczyński A, Wróbel Z. Tetrahedron Lett. 2011; 6484
  • 5 Wróbel Z, Stachowska K, Grudzień K, Kwast A. Synlett 2011; 1439
  • 6 Wróbel Z, Stachowska K, Kwast A, Gościk A, Królikiewicz M, Pawłowski R, Turska I. Helv. Chim. Acta 2013; DOI: 10.1002/hlca.201200304.
  • 7 Królikiewicz M, Wróbel Z. J. Heterocycl. Chem. 2013; in press
  • 8 Analytical Data for Representative New Products Compound 3e: yellow crystals; mp 246 °C (dec.; hexane–EtOAc). 1H NMR (400 MHz, CDCl3): δ = 1.24 (s, 9 H), 2.54 (s, 3 H), 4.15 (s, 1 H), 5.77 (d, J = 2.1 Hz, 1 H), 6.59 (dd, J = 9.2, 2.1 Hz, 1 H), 7.26-7.29 (m, 2 H), 7.58–7.61 (m, 2 H), 8.17 (d, J = 9.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 11.7, 29.4, 51.4, 97.7, 112.3, 121.5, 122.6, 130.1, 130.5, 134.6, 134.8, 135.4, 135.9, 149.5, 157.2. ESI-MS: m/z = 380 [M + Na]+, 358 [M + H]+. ESI-HRMS: m/z calcd for C19H21N3O2 35Cl [M + H]+: 358.1322; found: 358.1234. Compound 4a: white crystals; mp 179–180 °C (hexane–EtOAc). IR (KBr): 2236 (CN), 1755, 1672, 1621 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.17 (t, J = 7.4 Hz, 3 H), 1.35 (t, J = 7.4 Hz, 3 H), 2.38–2.45 (m, 2 H), 2.46 (s, 3 H), 2.96 (q, J = 7.4 Hz, 2 H), 3.64 (s, 3 H), 3.78 (s, 3 H), 6.11 (s, 1 H), 7.14–7.18 (m, 1 H), 7.38–7.43 (m, 1 H), 7.92 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 9.7, 10.8, 21.3, 27.1, 28.5, 50.0, 54.5, 56.0, 97.7, 118.1, 120.6, 126.9, 127.7, 127.8, 128.6, 130.9, 131.0, 132.9, 135.8, 139.7, 154.8, 156.9, 160.4, 168.7. MS (EI): m/z 420 (16), 419 (57), 390 (10), 361 (27), 360 (100), 333 (12). HRMS (EI): m/z calcd for C24H25N3O4: 419.1845; found: 419.1841. Compound 6b: yellow crystals; mp 148–151 °C (hexane–EtOAc). IR (KBr): 2241 (CN), 1731, 1670, 1627 cm–1. 1H NMR (400 MHz, CDCl3): δ = 0.95 (t, J = 7.4 Hz, 3 H), 1.36 (t, J = 7.4 Hz, 3 H), 1.51 (s, 9 H), 2.18–2.30 (m, 2 H), 2.93–3.02 (m, 2 H), 6.51 (s, 1 H), 7.25–7.29 (m, 2 H), 7.61–7.65 (m, 2 H), 7.85 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 8.0, 10.5, 27.0, 28.7, 31.6, 47.2, 59.3, 99.9, 117.0, 121.6, 124.9, 128.3, 129.5, 129.6, 130.6, 130.7, 134.2, 135.0, 135.8, 144.1, 154.4, 160.9, 170.9. MS (EI): m/z (%) = 450 (16), 449 (17), 448 (34), 395 (15), 394 (47), 393 (40), 392 (100), 365 (17), 364 (19), 363 (27), 337 (21), 336 (20), 335 (43). HRMS (EI): m/z calcd for C25H25N4O2Cl: 448.1666; found: 448.1687.

    • Some illustrative examples:
    • 9a Shuman RT, Ornstein PL, Paschal JW, Gesellchen PD. J. Org. Chem. 1990; 55: 738
    • 9b Yousif MM, Saeki S, Hamana M. Chem. Pharm. Bull. 1982; 30: 2326
    • 9c Tagawa Y, Nomura M, Yamashita H, Goto Y, Hamana M. Heterocycles 1999; 51: 2385
    • 9d Yousif MM, Saeki S, Hamana M. J. Heterocycl. Chem. 1980; 17: 305
    • 9e Douglass JE, Gebhart MA. J. Heterocycl. Chem. 1990; 27: 1433
  • 10 Witanowski M, Stefaniak L, Webb GA. Nitrogen NMR Spectroscopy, In Annual Reports on NMR Spectroscopy . Webb GA. Academic Press; London: 1982: 1-486 Part B, Vol. 11
    • 11a Fife TH, Duddy NW. J. Am. Chem. Soc. 1983; 105: 74
    • 11b RajanBabu TV, Chenard BL, Petti MA. J. Org. Chem. 1986; 51: 1704
    • 11c Karp GM, Condon ME. J. Heterocycl. Chem. 1994; 31: 1513
    • 11d Tichenor MS, Kastrinsky DB, Boger DL. J. Am. Chem. Soc. 2004; 26: 8396
  • 12 General Procedure for the Synthesis of Pyrrolo-quinoxalinones 6a–j 5-Amino-N-aryl-2-nitrosoaniline (0.5 mmol) and methyl 2-cyanoalkanoate (1.1 mmol) were dissolved in dry MeCN (5 mL). DBU (0.4 mL, 2.68 mmol) was added in one portion, and the mixture was stirred at r.t. for the time specified in Table 2. The mixture was poured into sat. NH4Cl (10 mL) and H2O (10 mL), extracted with EtOAc (3 × 20 mL), dried with Na2SO4, and the crude product was chromatographed.
    • 13a Aurich G. Chem. Ber. 1965; 98: 3917
    • 13b Mąkosza M, Jagusztyn-Grochowska M, Ludwikow M, Jawdosiuk M. Tetrahedron 1974; 30: 3723
    • 13c Jawdosiuk M, Ostrowska B, Mąkosza M. J. Chem. Soc. D 1971; 548
    • 14a Conant JB, Fieser LF. J. Am. Chem. Soc. 1924; 46: 1858
    • 14b Pethig BR, Gascoyne PR. C, Mclaughlin JA, Szent-Gyorgyi A. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 129
  • 15 Ritzmann G, Ienaga K, Kiriasis L. Chem. Ber. 1980; 113: 1535