Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(13): 1990-1994
DOI: 10.1055/s-0032-1316582
DOI: 10.1055/s-0032-1316582
letter
Design, Synthesis and Use of Novel 3,3′-Disubstituted 2,2′-Bipyridine-Based Chiral Ligands: Asymmetric Catalysis in Direct Aldol Reactions
Further Information
Publication History
Received: 12 May 2012
Accepted after revision: 29 May 2012
Publication Date:
23 July 2012 (online)
Abstract
A wide range of chiral ligands based on the 2,2′-bipyridine scaffold were designed and synthesized. In complexation with metal Lewis acids, the reactivity and stereoselectivity of the prepared chiral ligands were examined in asymmetric catalytic direct aldol reactions, thus providing the desired products with high stereoselectivities.
Key words
2,2′-bipyridine - bifunctional catalysis - direct aldol reaction - Lewis acid - Lewis baseSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1 For a selected review on direct catalytic asymmetric aldol reaction, see: Trost BM, Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
- 2a Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
- 2b Liu X, Lin L, Feng X. Chem. Commun. 2009; 6145
- 2c Ma J.-A, Cahard D. Angew. Chem. Int. Ed. 2004; 43: 4566
- 2d Shibasaki M, Kanai M, Matsunaga S, Kumagai N. Acc. Chem. Res. 2009; 42: 1117
- 2e Yamamoto H, Futatsugi K. Angew. Chem. Int. Ed. 2005; 44: 1924
- 3 For a selected review on combination transition-metal catalysis and organocatalysis, see: Zhong C, Shi X. Eur. J. Org. Chem. 2010; 2999
- 4a Arnold K, Batsanov AS, Davies B, Grosjean C, Schutz T, Whiting A, Zawatzky K. Chem. Commun. 2008; 44: 3879
- 4b Daka P, Xu Z, Alexa A, Wang H. Chem. Commun. 2011; 47: 224
- 4c Paradowska J, Pasternak M, Gut B, Gryzło B, Mlynarski J. J. Org. Chem. 2012; 77: 173
- 4d Xu Z, Daka P, Budik I, Wang H, Bai F.-Q, Zhang H.-X. Eur. J. Org. Chem. 2009; 4581
- 4e Xu Z, Daka P, Wang H. Chem. Commun. 2009; 45: 6825
- 5a Kwong H.-L, Yeung H.-L, Yeung C.-T, Lee W.-S, Lee C.-S, Wong W.-L. Coord. Chem. Rev. 2007; 251: 2188
- 5b Malkov AV, Kocovsky P. Curr. Org. Chem. 2003; 7: 1737
- 6a Assalit A, Billard T, Chambert S, Langlois BR, Queneau Y, Coe D. Tetrahedron: Asymmetry 2009; 20: 593
- 6b Boyd DR, Sharma ND, Sbircea L, Murphy D, Belhocine T, Malone JF, James SL, Allen CC. R, Hamilton JT. G. Chem. Commun. 2008; 44: 5535
- 6c Denmark SE, Fan Y, Eastgate MD. J. Org. Chem. 2005; 70: 5235
- 6d Ishikawa S, Hamada T, Manabe K, Kobayashi S. J. Am. Chem. Soc. 2004; 126: 12236
- 6e Kadlčíková A, Hrdina R, Valterová I, Kotora M. Adv. Synth. Catal. 2009; 351: 1279
- 6f Kobayashi S, Ogino T, Shimizu H, Ishikawa S, Hamada T, Manabe K. Org. Lett. 2005; 7: 4729
- 6g Kokubo M, Naito T, Kobayashi S. Chem. Lett. 2009; 38: 904
- 6h Lee W.-S, Yeung C.-T, Sham K.-C, Wong W.-T, Kwong H.-L. Polyhedron 2011; 30: 178
- 6i Lu T, Zhu R, An Y, Wheeler SE. J. Am. Chem. Soc. 2012; 134: 3095
- 6j Nakajima M, Yokota T, Saito M, Hashimoto S. Tetrahedron Lett. 2004; 45: 61
- 6k Ollevier T, Plancq B. Chem. Commun. 2012; 48: 2289
- 7a Wang J, Djukic B, Cao J, Alberola A, Razavi FS, Pilkington M. Inorg. Chem. 2007; 46: 8560
- 7b Kwak OK, Kim JJ, Min KS, Kim J, Kim BG. Inorg. Chem. Commun. 2007; 10: 811
- 7c Aydemir M, Durap F, Baysal A, Meric N, Buldağ A, Gümgüm B, Özkar S, Yıldırım LT. J. Mol. Catal. A: Chem. 2010; 326: 75
- 7d Chelucci G, Culeddu N, Saba A, Valenti R. Tetrahedron: Asymmetry 1999; 10: 3537
- 7e Baysal A, Aydemir M, Durap F, Gümgüm B, Özkar S, Yıldırım LT. Polyhedron 2007; 26: 3373
- 8 General Procedure of the Asymmetric Aldol Reaction Ketone (1 mL) and distilled H2O (25 μL) were added to a test tube with ligand 1 (1.9 mg, 0.005 mmol, 5 mol%) and stirred for 15 min, then Yb(OTf)3 (3.1 mg, 0.005 mmol, 5 mol%) was added to the mixture and stirred for 30 min. After the mixture was cooled to 0 °C, the corresponding aldehyde (0.1 mmol) was added, and the whole mixture was stirred at 0 °C for 96—168 h. After dried with anhyd Na2SO4 (200 mg), the reaction mixture was purified by flash chromatography on silica gel (eluent: EtOAc–PE) to give a mixture of syn- and anti-aldol products. The dr and ee values were determined by chiral HPLC analysis. 2-[Hydroxy(4-nitrophenyl)methyl]cyclohexanone (Table 2, Entry 1) Reaction time 96 h; yield 89% (a mixture of syn and anti products). anti-Diastereomer: 1H NMR (400 MHz, CDCl3): δ = 8.21 (d, J = 8.4 Hz, 2 H), 7.51 (d, J = 8.8 Hz, 2 H), 4.90 (dd, J = 2.8, 8.4 Hz, 1 H), 4.07 (d, J = 3.2 Hz, 1 H), 2.36–2.61 (m, 3 H), 2.09–2.14 (m, 1 H), 1.36–1.85 (m, 6 H). syn-Diastereomer: 1H NMR (400 MHz, CDCl3): δ = 8.21 (d, J = 8.4 Hz, 2 H), 7.49 (d, J = 8.8 Hz, 2 H), 5.49 (s, 1 H), 3.17 (d, J = 2.8 Hz, 1 H), 2.36–2.65 (m, 3 H), 2.10–2.13 (m, 1 H), 1.51–1.88 (m, 6 H). HPLC separation conditions: Chiralcel AD, solvent: hexane–i-PrOH (90:10), flow rate: 1.0 mL/min, λ = 254 nm; retention time: t R (syn) = 17.655 min; t R (syn) = 20.648 min; t R (anti) = 23.230 min; t R (anti) = 31.517 min; dr (anti/syn) = 95:5; ee (anti) = 85%.
For selected reviews on bifunctional catalysis, see:
For selected examples on Lewis acid–Lewis base catalysis, see:
For selected reviews, see:
For selected examples, see:
For selected examples, see: