Synlett 2012; 23(10): 1546-1548
DOI: 10.1055/s-0031-1291013
letter
© Georg Thieme Verlag Stuttgart · New York

Continuous Flow Synthesis of Secondary Amides by Tandem Azidation– Amidation of Anilines

Christian Spiteri
School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK, Fax: +44(115)9513533   Email: john.moses@nottingham.ac.uk
,
John E. Moses*
School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK, Fax: +44(115)9513533   Email: john.moses@nottingham.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 20 February 2012

Accepted after revision: 23 March 2012

Publication Date:
29 May 2012 (online)


Abstract

The continuous flow synthesis of a variety of secondary amides by tandem azidation–amidation of anilines is described. This new procedure benefits from the improved safety feature of generating aromatic azides in flow, thus ensuring low concentrations of any potentially hazardous intermediates. The protocol was amenable to the production of multi-gram quantities of the amide product.

Supporting Information

 
  • References

    • 1a Noël T, Buchwald SL. Chem. Soc. Rev. 2011; 40: 5010
    • 1b Wegner J, Ceylan S, Kirschning A. Chem. Commun. 2011; 47: 4583
    • 2a Baumann M, Baxendale IR, Ley SV, Smith CD, Tranmer GK. Org. Lett. 2006; 8: 5321
    • 2b Sedelmeier J, Ley SV, Baxendale IR, Baumann M. Org. Lett. 2010; 12: 3618
    • 2c Brasholz M, Saubern S, Savage GP. Aust. J. Chem. 2011; 64: 1397
    • 2d Bartrum HE, Blakemore DC, Moody CJ, Hayes CJ. Chem.–Eur. J. 2011; 17: 9586
    • 2e Webb D, Jamison TF. Org. Lett. 2012; 14: 568
    • 3a O’Brien M, Baxendale IR, Ley SL. Org. Lett. 2010; 12: 1596
    • 3b Bogdan AR, James K. Org. Lett. 2011; 13: 4060
    • 3c Lévesque F, Seeberger PH. Org. Lett. 2011; 13: 5008
  • 4 For a selective review, see: Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
  • 5 For a selective review, see: Han S.-Y, Kim Y.-A. Tetrahedron 2004; 60: 2447
  • 6 Castro B, Dormoy JR, Evin G, Selve C. Tetrahedron Lett. 1975; 1219
  • 7 Sheehan JC, Hess GP. J. Am. Chem. Soc. 1955; 77: 1067
  • 8 Fan C.-X, Hao X.-L, Ye Y.-H. Synth. Commun. 1996; 26: 1455
  • 9 Dourtoglou V, Ziegler J.-C, Gross B. Tetrahedron Lett. 1978; 1269
    • 10a Kolb HC, Sharpless KB. Drug Discovery Today 2003; 8: 1128
    • 10b Moses JE, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
    • 10c Moorhouse AD, Moses JE. ChemMedChem 2008; 3: 715
    • 10d Spiteri C, Moses JE. Angew. Chem. Int. Ed. 2010; 49: 31
    • 10e Moorhouse AD, Spiteri C, Sharma P, Zloh M, Moses JE. Chem. Commun. 2011; 47: 230
  • 11 Sharma P, Moorhouse AD, Moses JE. Synlett 2011; 2384
  • 12 Rosen T, Lico IM, Chu DT. W. J. Org. Chem. 1988; 53: 1580
  • 13 Shangguan N, Katukojvala S, Greenberg R, Williams LJ. J. Am. Chem. Soc. 2003; 125: 7754
    • 15a Stazi F, Cancogni D, Turco L, Westerduin P, Bacchi S. Tetrahedron Lett. 2010; 51: 5385
    • 15b Smith CJ, Smith CD, Nikbin N, Ley SL, Baxendale IR. Org. Biomol. Chem. 2011; 9: 1927
    • 15c Smith CJ, Nikbin N, Ley SV, Lange H, Baxendale IR. Org. Biomol. Chem. 2011; 9: 1938
  • 16 Interestingly, the synthesis of 10 by this method offers an orthogonal strategy towards divergent amide synthesis without the need for protecting groups
  • 17 Compound 14 and 2,6-lutidine in MeCN–H2O (1:1) formed a white precipitate that could not be manually loaded into the flow reactor