Synlett 2012; 23(9): 1389-1393
DOI: 10.1055/s-0031-1290978
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Substituted Pyrroles by a Gold(I)-Catalyzed Tandem Reaction of 1-(1-Alkynyl)cyclopropyl Oxime Ethers with Nucleophiles

Yanqing Zhang
a   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North, Zhongshan Road, Shanghai 200062, P. R. of China
,
Junliang Zhang*
a   Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North, Zhongshan Road, Shanghai 200062, P. R. of China
b   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. of China, Fax: +86(21)62235039   Email: jlzhang@chem.ecnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 13 February 2012

Accepted after revision: 20 March 2012

Publication Date:
14 May 2012 (online)


Abstract

A gold(I)-catalyzed tandem reaction of 1-(1-alkynyl) cyclopropyl oxime ethers with nucleophiles under mild conditions has been developed, which provides a facile access to highly substituted pyrroles in moderate to excellent yields.

Supporting Information

 
  • References and Notes

    • 1a Boger DL, Boyce CW, Labroli MA, Sehon CA, Jin Q. J. Am. Chem. Soc. 1999; 121: 54
    • 1b Grube A, Köck M. Org. Lett. 2006; 8: 4675
    • 1c Fujita M, Nakao Y, Matsunaga S, Seiki M, Itoh Y, Yamashita J, van Soest RW. M, Fusetani N. J. Am. Chem. Soc. 2003; 125: 15700
    • 1d Gupton J In Topics in Heterocyclic Chemistry. Heterocyclic Antitumor Antibiotics. Vol. 2. Springer; Berlin: 2006. 53-92
    • 1e Seiple IB, Su S, Young IS, Nakamura A, Yamaguchi J, Jørgensen L, Rodriguez RA, O’Malley DP, Gaich T, Köck M, Baran PS. J. Am. Chem. Soc. 2011; 133: 14710
    • 1f Hu DX, Clift MD, Lazarski KE, Thomson RJ. J. Am. Chem. Soc. 2011; 133: 1799
    • 1g Movassaghi M, Siegel DS, Han S. Chem. Sci. 2010; 1: 561
    • 1h Sundberg RJ In Comprehensive Heterocyclic Chemistry II . Vol. 2. Katritzky AR, Rees CW, Scriven EF. V. Pergamon Press; Oxford: 1996. 119
    • 1i Fan H, Peng J, Hamann MT, Hu J.-F. Chem. Rev. 2008; 108: 264
    • 2a For a review of pyrrole structure in materials, see: Electronic Materials: The Oligomer Approach . Müllen K, Wegner G. Wiley-VCH; Weinheim: 1998
    • 2b Domingo VM, Alemán C, Brillas E, Juliá L. J. Org. Chem. 2001; 66: 4058
    • 2c Novák P, Müller K, Santhanam KS. V, Haas O. Chem. Rev. 1997; 97: 207
    • 2d Gabriel S, Cecius M, Fleury-Frenette K, Cossement D, Hecq M, Ruth N, Jerome R, Jerome C. Chem. Mater. 2007; 19: 2364
    • 3a Lehuėdė J, Fauconneau B, Barrier L, Ourakow M, Piriou A, Vierfond J.-M. Eur. J. Med. Chem. 1999; 34: 991
    • 3b Bellina F, Rossi R. Tetrahedron 2006; 62: 7213
    • 3c Fürstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
    • 3d Murineddu G, Loriga G, Gavini E, Peanna AT, Mule AC, Pinna GA. Arch. Pharm. Med. Chem. 2001; 334: 393
  • 4 Venkataraman K. EP 434940A2, 1991

    • For reviews on pyrrole synthesis, see:
    • 5a Sundberg RJ In Comprehensive Heterocyclic Chemistry . Vol. 2. Katritzky AR, Rees CW, Scriven EF. V. Pergamon; Oxford: 1996: 119-206
    • 5b Ferreira VF, De Souza MC. B. V, Cunha AC, Pereira LO. R, Ferreira ML. G. Org. Prep. Proced. Int. 2001; 33: 411
  • 6 Li JJ. Name Reactions: A Collection of Detailed Reaction Mechanisms. Springer; Berlin: 2002

    • For recent examples of the Hantzsch synthesis, see:
    • 7a Palacios F, Aparicio D, de los Santos JM, Vicario J. Tetrahedron 2001; 57: 1961
    • 7b Trautwein AW, Süßmuth RD, Jung G. Bioorg. Med. Chem. Lett. 1998; 8: 2381
    • 7c Matiychuk VS, Martyak RL, Obushak ND, Ostapiuk YV, Pidlypnyi NI. Chem. Heterocycl. Compd. (N.Y., NY, U.S.) 2004; 40: 1218

      For recent examples of Paal–Knorr reaction, see:
    • 8a Minetto G, Raveglia LF, Sega A, Taddei M. Eur. J. Org. Chem. 2005; 5277
    • 8b Banik BK, Banik I, Renteria M, Dasgupta SK. Tetrahedron Lett. 2005; 46: 2643
    • 8c Bharadwaj AR, Scheidt KA. Org. Lett. 2004; 6: 2465
    • 8d Minetto G, Raveglia LF, Taddei M. Org. Lett. 2004; 6: 389
    • 8e Banik BK, Samajdar S, Banik I. J. Org. Chem. 2004; 69: 213
    • 8f Wang B, Gu Y, Luo C, Yang T, Yang L, Suo J. Tetrahedron Lett. 2004; 45: 3417
  • 9 For an example of Knorr pyrrole synthesis, see: Alberola A, Ortega AG, Sádaba ML, Sañudo C. Tetrahedron 1999; 55: 6555

    • For recent examples on the pyrrole synthesis based on the transition-metal-catalyzed process, see:
    • 10a Takaya H, Kojima S, Murahashi S.-I. Org. Lett. 2001; 3: 421
    • 10b Kel’in AV, Sromek AW, Gevorgyan V. J. Am. Chem. Soc. 2001; 123: 2074
    • 10c Gabriele B, Salerno G, Fazio A. J. Org. Chem. 2003; 68: 7853
    • 10d Shen H.-C, Li C.-W, Liu R.-S. Tetrahedron Lett. 2004; 45: 9245
    • 10e Wurz RP, Charette AB. Org. Lett. 2005; 7: 2313
    • 10f Kamijo S, Kanazawa C, Yamamoto Y. J. Am. Chem. Soc. 2005; 127: 9260
    • 10g Larionov OV, de Meijere A. Angew. Chem. Int. Ed. 2005; 44: 5664
    • 10h Balme G. Angew. Chem. Int. Ed. 2004; 43: 6238
    • 10i Dong C, Deng G, Wang J. J. Org. Chem. 2006; 71: 5560
    • 11a Bian Y.-J, Liu X.-Y, Ji K.-G, Shu X.-Z, Guo L.-N, Liang Y.-M. Tetrahedron 2009; 65: 1424
    • 11b Donohoe TJ, Race NJ, Bower JF, Callens CK. A. Org. Lett. 2010; 12: 4094
    • 11c Reddy GR, Reddy TR, Joseph SC, Reddy KS, Reddy LS, Kumar PM, Krishna DR, Reddy CM, Rambabu D, Kapavarapu R, Lakshmi C, Meda T, Priya KK, Parsa KV. L, Pal M. Chem. Commun. 2011; 47: 7779
    • 12a Yan R.-L, Luo J, Wang C.-X, Ma C.-W, Huang G.-S, Liang Y.-M. J. Org. Chem. 2010; 75: 5395
    • 12b Lourdusamy E, Yao L, Park C.-M. Angew. Chem. Int. Ed. 2010; 49: 7963
    • 13a Gorin DJ, Davis NR, Toste FD. J. Am. Chem. Soc. 2005; 127: 11260
    • 13b Benedetti E, Lemière G, Chapellet L.-L, Penoni A, Palmisano G, Malacria M, Goddard JP, Fensterbank L. Org. Lett. 2010; 12: 4396
    • 13c Saito A, Konishi T, Hanzawa Y. Org. Lett. 2010; 12: 372
    • 13d Barber DM, Sanganee H, Dixon D. Chem. Commun. 2011; 47: 4379
    • 14a Li Q, Fan A, Lu Z, Cui Y, Lin W, Jia Y. Org. Lett. 2010; 12: 4066
    • 14b Liu W, Jiang H, Huang L. Org. Lett. 2010; 12: 312
    • 14c Harrison TJ, Kozak JA, Corbella-Pané M, Dake GR. J. Org. Chem. 2006; 71: 4525
    • 15a De Surya K. Catal. Lett. 2008; 124: 174
    • 15b Cadierno V, Gimeno J, Nebra N. Chem.–Eur. J. 2007; 13: 9973
    • 15c Cadierno V, Gimeno J, Nebra N. J. Heterocycl. Chem. 2010; 47: 233
    • 15d Cadierno V, Crochet P. Curr. Org. Synth. 2008; 5: 343
    • 16a Maiti S, Biswas S, Jana U. J. Org. Chem. 2010; 75: 1674
    • 16b Wang Y, Bi X, Li D, Liao P, Wang Y, Yang J, Zhang Q, Liu Q. Chem. Commun. 2011; 47: 809
    • 16c Li L, Zhao M.-N, Ren Z.-H, Li J, Guan Z.-H. Synthesis 2012; 44: 532
    • 17a Hashmi AS. K, Sinha P. Adv. Synth. Catal. 2004; 346: 432
    • 17b Hashmi AS. K, Bührle M, Salathé R, Bats JW. Adv. Synth. Catal. 2008; 350: 2059
  • 18 Hashmi AS. K. Gold Bull. 2004; 37: 51
  • 19 Lu B.-L, Dai L, Shi M. Chem. Soc. Rev. 2012; 41: 3318
    • 20a Zhang J, Schmalz H.-G. Angew. Chem. Int. Ed. 2006; 45: 6704
    • 20b Zhang G, Huang X, Li G, Zhang L. J. Am. Chem. Soc. 2008; 130: 1814
    • 20c Zhang Y, Chen Z, Xiao Y, Zhang J. Chem. Eur. J. 2009; 15: 5218
    • 20d Bai Y, Fang J, Ren J, Wang Z. Chem.–Eur. J. 2009; 15: 8975
    • 20e Zhang Y, Liu F, Zhang J. Chem.–Eur. J. 2010; 16: 6146
  • 21 General Procedure for the Gold(I)-Catalyzed Tandem Reaction of 1-(1-Alkynyl)cyclopropyl Oxime Ethers with Nucleophiles A solution of PCy3AuOTf (generated from 1:1 mol ratio of PCy3AuCl/AgOTf, 3 mL, 0.005 M in toluene, 5 mol%) was added to a dry Schlenk tube under Ar. Oxime ether 1a (0.20 mmol, 57.8 mg) and nucleophile 2a (0.4 mmol, 43.3 mg) were added to the mixture. The resulting mixture was stirred at r.t. unless otherwise specified until the reactions were complete, as determined by TLC analysis. The residue was purified by flash column chromatography on silica gel (hexanes–EtOAc = 30:1) to afford the pure product 3a (0.17 mmol, 68.8 mg) in 87% yield; oil. 1H NMR (400 MHz, CDCl3): δ = 7.60–7.48 (m, 2 H), 7.30–7.04 (m, 13 H), 5.96 (s, 1 H), 4.42–4.34 (m, 2 H), 4.20 (d, J = 12.4 Hz, 1 H), 3.51 (s, 3 H), 2.92–2.86 (m, 1 H), 2.66–2.60 (m, 1 H), 1.80 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 142.22, 138.69, 131.57, 128.44, 128.20, 128.13, 127.54, 127.40, 127.28, 126.88, 125.77, 125.68, 125.60, 124.06, 112.25, 104.78, 82.63, 70.43, 65.07, 35.59, 8.08 ppm. IR (neat): ν = 1602, 1517, 1493, 1452, 1351, 1263, 1238, 1218, 1068, 1026, 971, 910 cm–1. MS (EI): m/z (%): 397 (15.33) [M]+, 91 (100). HRMS: m/z calcd for C27H27NO2: 397.2042; found: 397.2045