Synlett 2012; 23(9): 1343-1348
DOI: 10.1055/s-0031-1290957
letter
© Georg Thieme Verlag Stuttgart · New York

Cycloaddition of CO2 to Epoxides Catalyzed by N-Heterocyclic Carbene (NHC)–ZnBr2 System under Mild Conditions

Xiang Liu
a   College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Xuzhou Normal University, Xuzhou, Jiangsu 221116, P. R. of China, Fax: +86(516)83500349   Email: yhshi@xznu.edu.cn
,
Changsheng Cao*
a   College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Xuzhou Normal University, Xuzhou, Jiangsu 221116, P. R. of China, Fax: +86(516)83500349   Email: yhshi@xznu.edu.cn
,
Yunfei Li
a   College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Xuzhou Normal University, Xuzhou, Jiangsu 221116, P. R. of China, Fax: +86(516)83500349   Email: yhshi@xznu.edu.cn
,
Pei Guan
a   College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Xuzhou Normal University, Xuzhou, Jiangsu 221116, P. R. of China, Fax: +86(516)83500349   Email: yhshi@xznu.edu.cn
,
Longguang Yang
a   College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Xuzhou Normal University, Xuzhou, Jiangsu 221116, P. R. of China, Fax: +86(516)83500349   Email: yhshi@xznu.edu.cn
,
Yanhui Shi*
a   College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Xuzhou Normal University, Xuzhou, Jiangsu 221116, P. R. of China, Fax: +86(516)83500349   Email: yhshi@xznu.edu.cn
b   State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 17 February 2012

Accepted after revision: 12 March 2012

Publication Date:
08 May 2012 (online)


Abstract

A very simple and convenient method toward coupling of CO2 with epoxides catalyzed by NHC/ZnBr2 has been developed. This catalytic system exhibits excellent activity and selectivity in the cycloaddition reactions of CO2 to terminal epoxides. The reactions can even be carried out under CO2 pressure as low as 0.05 MPa and give carbonates in high yields.

Supporting Information

 
  • References and Notes

    • 1a Jessop PG, Joó F, Tai C.-C. Coord. Chem. Rev. 2004; 248: 2425
    • 1b Yoshida S, Fukui K, Kikuchi S, Yamada T. J. Am. Chem. Soc. 2010; 132: 4072
    • 1c Minakata S, Sasaki I, Ide T. Angew. Chem. Int. Ed. 2010; 49: 1309
    • 1d Zhang W.-Z, Li W.-J, Zhang X, Zhou H, Lu X.-B. Org. Lett. 2010; 12: 4748
    • 1e Lee B, Kang SH, Kang D, Lee KH, Cho J, Nam W, Han OH, Hur NH. Chem. Commun. 2011; 47: 11219
    • 1f Watile RA, Bagal DB, Patil YP, Bhanage BM. Tetrahedron Lett. 2011; 52: 6383
    • 2a Sakakura T, Choi J.-C, Yasuda H. Chem. Rev. 2007; 107: 2365
    • 2b Decortes A, Castilla AM, Kleij AW. Angew. Chem. Int. Ed. 2010; 49: 9822
    • 2c Liu X.-B, Darensbourg DJ. Chem. Soc. Rev. 2012; 41: 1462
    • 3a Kim HS, Kim JJ, Lee BG, Jung OS, Jang HG, Kang SO. Angew. Chem. Int. Ed. 2000; 39: 4096
    • 3b Kim HS, Kim JJ, Lee SD, Lah MS, Moon D, Jang HG. Chem. Eur. J. 2003; 9: 678
    • 3c Wu S.-S, Zhang X.-W, Dai W.-L, Yin S.-F, Li W.-S, Ren Y.-Q, Au C.-T. Appl. Catal., A 2008; 341: 106
    • 3d Xiong Y, Wang H, Wang R, Yan Y, Zheng B, Wang Y. Chem. Commun. 2010; 46: 3399
    • 4a Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K. J. Am. Chem. Soc. 1999; 121: 4526
    • 4b Kim YJ, Varma RS. J. Org. Chem. 2005; 70: 7882
    • 4c Jiang J.-L, Gao F, Hua R, Qiu X. J. Org. Chem. 2005; 70: 381
    • 4d Meléndez J, North M, Pasquale R. Eur. J. Inorg. Chem. 2007; 3323
    • 4e Darensbourg DJ. Chem. Rev. 2007; 107: 2388
    • 4f Dai W.-L, Luo S.-L, Yin S.-F, Au C.-T. Appl. Catal., A 2009; 366: 2
    • 4g Riduan SN, Zhang Y. Dalton Trans. 2010; 39: 3347
    • 4h North M, Pasquale R, Young C. Green Chem. 2010; 12: 1514
    • 4i Decortes A, Castilla AM, Kleij AW. Angew. Chem. Int. Ed. 2010; 49: 9822
    • 5a Arduengo AJ. III, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 361
    • 5b Arduengo AJ. III. Acc. Chem. Res. 1999; 32: 913
    • 5c Bourissou D, Guerret O, Gabbaïe FP, Bertrand G. Chem. Rev. 2000; 100: 39
    • 5d Methot JL, Roush WR. Adv. Synth. Catal. 2004; 346: 1035
    • 5e N-Heterocyclic Carbenes in Synthesis . Nolan SP. Wiley-VCH; Weinheim: 2006
    • 5f N-Heterocyclic Carbenes in Transition Metal Catalysis. Glorius F. Springer; Berlin: 2007
    • 5g Hahn FE, Jahnke MC. Angew. Chem. Int. Ed. 2008; 47: 3122
    • 5h Díez-González S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
    • 5i Melaimi M, Soleilhavoup M, Bertrand G. Angew. Chem. Int. Ed. 2010; 49: 8810
    • 5j Chiang P.-C, Bode JW. Org. Lett. 2011; 13: 2422
  • 6 Duong HA, Tekavec TN, Arif AM, Louie J. Chem. Commun. 2004; 112
  • 7 Van Ausdall BR, Glass JL, Wiggins KM, Aarif AM, Louie J. J. Org. Chem. 2009; 74: 7935
    • 8a Tommasi I, Sorrentino F. Tetrahedron Lett. 2005; 46: 2141
    • 8b Gu L.-Q, Zhang Y.-G. J. Am. Chem. Soc. 2010; 132: 914
    • 8c Van Ausdall BR, Poth NF, Kincaid VA, Arif AM, Louie J. J. Org. Chem. 2011; 76: 8413
    • 9a Zhou H, Zhang W.-Z, Liu C.-H, Qu J.-P, Lu X.-B. J. Org. Chem. 2008; 73: 8039
    • 9b Kayaki Y, Yamamoto M, Ikariya T. Angew. Chem. Int. Ed. 2009; 48: 4194
    • 10a Lu X.-B, Feng X.-J, He R. Appl. Catal., A 2002; 234: 25
    • 10b Lu X.-B, Liang B, Zhang Y.-J, Tian Y.-Z, Wang Y.-M, Bai C.-X, Wang H, Zhang R. J. Am. Chem. Soc. 2004; 126: 3732
  • 11 Lu X.-B, Zhang Y.-J, Liang B, Li X, Wang H. J. Mol. Catal. A: Chem. 2004; 210: 31
  • 12 Wang D, Wurst K, Buchmeiser MR. J. Organomet. Chem. 2004; 689: 2123
  • 13 Ajitha MJ, Suresh CH. Tetrahedron Lett. 2011; 52: 5403
  • 14 Li F, Xiao L, Xia C, Hu B. Tetrahedron Lett. 2004; 45: 8307
  • 15 General Procedure for the Cycloaddition Reaction of Epoxides with CO2 An oven-dried 50 mL of round-bottom flask containing 2 mol% of catalyst 3 (0.149 g, 0.35 mmol), 2 mol% of K2CO3 (0.048 g, 0.35 mmol), and 2 mol% of ZnBr2 (0.079 g, 0.35 mmol) was purged with CO2 under atmosphere pressure three times. Then epoxide (17.5 mmol) and DMSO (10 mL) were injected into the flask by syringe, and CO2 was provided by a balloon. The reaction was stirred at 80 °C for 24 h. After the reaction was cooled down, H2O (200 mL) was added to the reaction mixture. The organic layer was extracted with CH2Cl2 (3 × 20 mL), and filtered through a silica plug. The products were collected by evaporating volatiles and dried under vacuum. Using high-purity or low-grade CO2 had no impact on the results. 4-Ethyl-1,3-dioxolan-2-one 16 Yellow oil. 1H NMR (400 MHz, CDCl3): δ = 4.69–4.62 (m, 1 H), 4.52 (t, J = 8.0 Hz, 1 H), 4.08 (t, J = 7.6 Hz, 1 H), 1.87–1.68 (m, 2 H), 1.02 (t, J = 7.6 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 155.1 (C=O), 78.0, 69.0, 26.9, 8.5. IR: ν = 1799 (CO) cm–1. 4-Butyl-1,3-dioxolan-2-one 17 Yellow oil. 1H NMR (400 MHz, CDCl3): δ = 4.72–4.65 (m, 1 H), 4.51 (t, J = 8.0 Hz, 1 H), 4.05 (t, J = 8.0 Hz, 1 H), 1.82–1.61 (m, 2 H), 1.46–1.27 (m, 4 H), 0.89 (t, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 155.0 (C=O), 69.3, 53.4, 33.4, 26.3, 22.1, 13.7. IR: ν = 1790 (CO) cm–1. 4-(Chloromethyl)-1,3-dioxolan-2-one 18 Yellow oil. 1H NMR (400 MHz, CDCl3): δ = 4.99–4.93 (m, 1 H), 4.59 (app. t, J = 8.4 Hz, 1 H), 4.41 (dd, J = 6.0, 8.8 Hz, 1 H), 3.78 (dd, J = 12.0, 5.6 Hz, 1 H), 3.73 (dd, J = 12.0, 4.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 154.0 (C=O), 74.2, 66.9, 43.5. IR: ν = 1790 (CO) cm–1. 4-(Bromomethyl)-1,3-dioxolan-2-one 19 Yellow oil. 1H NMR (400 MHz, CDCl3): δ = 4.97–4.90 (m, 1 H), 4.60 (app. t, J = 8.4 Hz, 1 H), 4.36 (dd, J = 6.0, 9.0 Hz, 1 H), 3.61–3.52 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 154.2 (C=O), 73.9, 68.0, 31.7. IR: ν = 1794 (CO) cm–1. 4-Phenyl-1,3-dioxolan-2-one 18 White solid. 1H NMR (400 MHz, CDCl3): δ = 7.47–7.35 (m, 5 H), 5.68 (t, J = 8.0 Hz, 1 H), 4.80 (t, J = 8.4 Hz, 1 H), 4.35 (t, J = 8.4 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 154.8 (C=O), 135.8, 129.7, 129.2, 125.8, 77.9, 71.1. IR: ν = 1775 (CO) cm–1. 4-Benzyl-1,3-dioxolan-2-one 20 Yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.36–7.21 (m, 5 H), 4.96–4.89 (m, 1 H), 4.44 (t, J = 8.0 Hz, 1 H), 4.17 (t, J = 7.2 Hz, 1 H), 3.15 (dd, J = 14.0, 6.4 Hz, 1 H), 2.99 (dd, J = 14.2, 6.4 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 154.8 (C=O), 133.8, 129.3, 128.9, 127.5, 76.7, 68.4, 39.5. IR: ν = 1791 (CO) cm–1. 4-(Phenoxymethyl)-1,3-dioxolan-2-one 21 White solid. 1H NMR (400 MHz, CDCl3): δ = 7.31 (t, J = 7.6 Hz, 2 H), 7.02 (t, J = 7.2 Hz, 1 H), 6.91 (d, J = 8.4 Hz, 2 H), 5.06–5.00 (m, 1 H), 4.62 (t, J = 8.8 Hz, 1 H), 4.54 (dd, J = 8.4, 6.0 Hz, 1 H), 4.24 (dd, J = 10.0, 4.0 Hz, 1 H), 4.15 (dd, J = 10.4, 3.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 157.7, 154.6 (C=O), 129.7, 121.9, 114.5, 74.1, 66.8, 66.2. IR: ν = 1803 (CO) cm–1. 4-(Benzyloxymethyl)-1,3-dioxolan-2-one 20 Yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.39–7.30 (m, 5 H), 4.85–4.79 (m, 1 H), 4.60 (dd, J = 22.8, 12.0 Hz, 2 H), 4.49 (app. t, J = 8.4 Hz, 1 H), 4.39 (dd, J = 8.4, 6.0 Hz, 1 H), 3.71 (dd, J = 10.8, 3.6 Hz, 1 H), 3.62 (dd, J = 10.8, 3.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 154.8 (C=O), 137.0, 128.6, 128.1, 127.7, 74.9, 73.7, 68.8, 66.3. IR: ν = 1790 (CO) cm–1. (2-Oxo-1,3-dioxolan-4-yl)methyl Benzoate 22 Yellow oil. 1H NMR (400 MHz, CDCl3): δ = 8.02 (d, J = 8.0 Hz, 2 H), 7.60 (t, J = 7.2 Hz, 1 H), 7.47 (t, J = 7.6 Hz, 2 H), 5.09–5.03 (m, 1 H), 4.65–4.57 (m, 2 H), 4.51 (dd, J = 12.8, 4.0 Hz, 1 H), 4.43 (dd, J = 8.4, 5.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 165.9 (C=O), 154.4 (C=O), 133.7, 129.8, 128.6, 128.4, 73.8, 66.0, 63.6. IR: ν = 1793 (CO) cm–1
    • 16a Zhou H, Wang YM, Zhang WZ, Qu JP, Lu XB. Green Chem. 2011; 13: 644
    • 16b Ulusoy M, Kilic A, Durgun M, Tasci Z, Cetinkaya B. J. Organomet. Chem. 2011; 696: 1372
  • 17 Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T. Org. Lett. 2010; 12: 5728
  • 18 Huang JW, Shi M. J. Org. Chem. 2003; 68: 6705
  • 19 Sit WN, Ng SM, Kwong KY, Lau CP. J. Org. Chem. 2005; 70: 8583
  • 20 Davies SG, Fletcher AM, Kurosawa W, Lee JA, Poce G, Roberts PM, Thomson JE, Williamson DM. J. Org. Chem. 2010; 75: 7745
  • 21 Jiang J.-L, Gao F, Hua R, Qiu X.-Q. J. Org. Chem. 2005; 70: 381
  • 22 Dibenedetto A, Angelini A, Aresta M, Ethiraj J, Fragale C, Nocito F. Tetrahedron 2011; 67: 1308
  • 23 Zn–NHC Complex (3c–ZnCl2) 1H NMR (400 MHz, CDCl3): δ = 7.28 (t, J = 8.0 Hz, 2 H), 7.08 (d, J = 8.0 Hz, 4 H), 4.81 (s, 4 H), 2.95 (sext, J = 6.8 Hz, 4 H), 1.21 (d, J = 6.8 Hz, 12 H), 1.02 (d, J = 6.8 Hz, 12 H). 13C NMR (100 MHz, CDCl3): δ = 156.6, 146.5, 131.3, 129.4, 124.9, 55.7, 28.9, 25.4, 23.8. Anal. Calcd (%) for C27H38Cl2N2Zn (526.9 g/mol): C, 61.55; H, 7.27; N, 5.32. Found: C, 61.41; H, 7.57; N, 5.27
  • 24 1,3-Bis(2,6-diisopropylphenyl)imidazolinium-2-carboxylate (3–CO2) 1H NMR (400 MHz, CDCl3): δ = 7.48 (t, J = 8.0 Hz, 2 H), 7.28 (d, J = 7.6 Hz, 4 H), 4.88 (s, 4 H), 3.02 (sext, J = 6.8 Hz, 4 H), 1.40 (d, J = 6.8 Hz, 12 H), 1.25 (d, J = 6.8 Hz, 12 H). IR: ν = 1681 (CO) cm–1