Synlett 2012; 23(11): 1633-1638
DOI: 10.1055/s-0031-1290668
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient Method for the Synthesis of Symmetrical Disiloxanes from Alkoxysilanes Using Meerwein’s Reagent

Yogesh R. Jorapur
a  Department of Chemical Engineering, Nara National College of Technology, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
b  Core Research for Evolutional Science and Technology (CREST), JST Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, Fax: +81(743)556154   Email: shimada@chem.nara-k.ac.jp
,
Toyoshi Shimada*
a  Department of Chemical Engineering, Nara National College of Technology, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
b  Core Research for Evolutional Science and Technology (CREST), JST Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, Fax: +81(743)556154   Email: shimada@chem.nara-k.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 08 March 2012

Accepted after revision: 29 March 2012

Publication Date:
25 May 2012 (online)


Abstract

We report here a new and efficient route to symmetrical disiloxanes from their corresponding alkoxysilanes using Meerwein’s reagent as mediator and potassium carbonate as additive under mild reaction conditions in acetonitrile. Our methodology is very simple, economic, and high yielding. We have also proposed a reaction mechanism with the plausible silyloxonium intermediates.

Supporting Information

 
  • References and Notes

    • 1a Perry RJ, Hubbard PA. PCT Int. Appl WO 2002077356, 2002 ; Chem. Abstr. 2002, 137, 281058
    • 1b Dershem SM. U.S. Patent Appl. 2010041823, 2010 ; Chem. Abstr. 2010, 152, 263916
  • 2 Białecka-Florjańczyk E, Sołtysiak JT. J. Organomet. Chem. 2010; 695: 1911
  • 3 Gavillon R, Simonnet J.-T, Aubrun O. PCT Int Appl. 2010070138, 2010 ; Chem. Abstr. 2010, 153, 125361
    • 4a Liu T.-K, Hsieh C.-F. U.S. Patent Appl. 20100311922, 2010 ; Chem. Abstr. 2010, 153, 644411
    • 4b Kojima K, Naganawa T, Harashima A. PCT Int. Appl. WO 2010074295, 2010 ; Chem. Abstr. 2010, 153, 120126
    • 4c Hamachi T, Ozaki M, Tanaka H. PCT Int. Appl. WO 2002088253, 2002 ; Chem. Abstr. 2002, 137, 357888
  • 5 Pihan SA, Tsukruk T, Förch R. Surf. Coat. Technol. 2009; 203: 1856
    • 6a Corrie TI, Peter AH. Chem. Soc. Rev. 2007; 36: 2096
    • 6b Engel M, Hisgen B, Keller R, Kreuder W, Reck B, Ringsdorf H, Schmidt H.-W, Tschirnerp P. Pure Appl. Chem. 1985; 57: 1009
  • 7 Kondo S, Fukuda A, Yamamura T, Tanaka R, Unno M. Tetrahedron Lett. 2007; 48: 7946
  • 8 Seto I, Gunji T, Kumagai K, Arimitsu K, Abe Y. Bull. Chem. Soc. Jpn. 2003; 76: 1983
  • 9 Narumi F, Morohashi N, Matsumura N, Iki N, Kameyama H, Miyano S. Tetrahedron Lett. 2002; 43: 621
  • 10 Napier S, Marcuccio SM, Tye H, Whittaker M. Tetrahedron Lett. 2008; 49: 3939
  • 11 Pietraszuk C, Rogalski S, Majchrzak M, Marciniec B. J. Organomet. Chem. 2006; 691: 5476
  • 12 Ison EA, Corbin RA, Abu-Omar MM. J. Am. Chem. Soc. 2005; 127: 11938
  • 13 Matsuo T, Kawaguchi H. J. Am. Chem. Soc. 2006; 128: 12362
  • 14 Chojnowski J, Rubinsztajn S, Cella JA, Fortuniak W, Cypryk M, Kurjata J, Kaźmierski K. Organometallics 2005; 24: 6077
  • 15 Sridhar M, Ramanaiah BC, Narsaiah C, Swamy MK, Mahesh B, Reddy MK. K. Tetrahedron Lett. 2009; 50: 7166
  • 16 Pfeiffer J, Kickelbick G, Schubert U. Organometallics 2000; 19: 957
    • 17a Meerwein H, Hinz G, Hofmann P, Kroning E, Pfeil E. J. Prakt. Chem. 1937; 147: 257
    • 17b Meerwein H. Org. Synth. 1966; 46: 113
    • 17c Granik VG, Pyatin BM, Glushkov RG. Russ. Chem. Rev. 1971; 40: 747
  • 18 Jorapur YR, Mizoshita N, Maegawa Y, Nakagawa H, Hasegawa T, Tani T, Inagaki S, Shimada T. Chem. Lett. 2012; 41: 280
    • 19a Jorapur YR, Shimada T. Synlett 2012; 23: 1064
    • 19b For detailed experimental procedure for the synthesis of fluorosilanes using Meerwein’s reagent, see the Supporting Information
  • 20 Maegawa Y, Nagano T, Yabuno T, Nakagawa H, Shimada T. Tetrahedron 2007; 63: 11467
  • 21 Typical Experimental Procedure for the Synthesis of Symmetrical Disiloxane (Table 1, entries 2, 8 and 9): A dry and nitrogen-flushed 10-mL screw-capped vial was charged with alkoxysilane (1.0 mmol), MeCN (5.0 mL) followed by the addition of K2CO3 (138.2 mg, 1.0 mmol) and Me3OBF4 (148 mg, 1.0 mmol) or Et3OBF4 (190 mg, 1.0 mmol) or Et3OPF6 (248 mg, 1.0 mmol). The reaction mixture was stirred at 100 °C for 90 min and quenched by dropwise addition of H2O (1.0–2.0 mL). It was then diluted with CH2Cl2 and the organic layer was washed with brine, dried over anhyd MgSO4, and evaporated under reduced pressure. The crude mixture was purified by chromatog-raphy on silica gel (5% EtOAc–hexane as eluent) to give the symmetrical disiloxane. 1,3-Bis(4-bromophenyl)-1,1,3,3-tetra(prop-2-enyl)-disiloxane (2a): colorless liquid. 1H NMR (270 MHz, CDCl3): δ = 1.87–1.93 (m, 8 H), 4.86–4.88 (m, 4 H), 4.90–4.94 (m, 4 H), 5.64–5.80 (m, 4 H), 7.37 (d, J = 8.4 Hz, 4 H), 7.49 (d, J = 8.4 Hz, 4 H). 13C NMR (68 MHz, CDCl3): δ = 23.1, 115.3, 124.7, 130.9, 132.6, 134.8, 135.2. HRMS (FAB+): m/z [M – C3H5]+ calcd for C21H23Br2OSi2: 504.9654; found: 504.9651. 1,3-Diphenyl-1,1,3,3-tetra(prop-2-enyl)disiloxane (2b): colorless liquid. 1H NMR (270 MHz, CDCl3): δ = 1.88–1.92 (m, 8 H), 4.86–4.94 (m, 8 H), 5.69–5.85 (m, 4 H), 7.32–7.40 (m, 6 H), 7.52–7.56 (m, 4 H). 13C NMR (68 MHz, CDCl3): δ = 22.3, 114.8, 127.7, 129.7, 133.2, 133.7, 136.3. HRMS (EI+): m/z [M]+ calcd for C24H30OSi2: 390.1835; found: 390.1839. 1,3-Bis(4-methoxyphenyl)-1,1,3,3-tetra(prop-2-enyl)-disiloxane (2c): colorless liquid. 1H NMR (400 MHz, CDCl3): δ = 1.85–1.87 (m, 8 H), 3.82 (s, 6 H), 4.86–4.91 (m, 8 H), 5.73–5.80 (m, 4 H), 7.89 (d, J = 6.8 Hz, 4 H), 7.46 (d, J = 6.8 Hz, 4 H). 13C NMR (100 MHz, CDCl3): δ = 23.4, 55.0, 113.4, 114.6, 127.3, 133.4, 135.2, 160.8. HRMS (EI+): m/z [M]+ calcd for C26H34O3Si2: 450.2046; found: 450.2049. 1,3-Bis(4-methylphenyl)-1,1,3,3-tetra(prop-2-enyl)-disiloxane (2d): colorless liquid. 1H NMR (400 MHz, CDCl3): δ = 1.86–1.88 (m, 8 H), 2.35 (s, 6 H), 4.86–4.92 (m, 8 H), 5.73–5.80 (m, 4 H), 7.17 (d, J = 7.2 Hz, 4 H), 7.43 (d, J = 7.2 Hz, 4 H). 13C NMR (100 MHz, CDCl3): δ = 21.5, 23.4, 114.6, 128.5, 132.7, 133.4, 133.7, 139.5. HRMS (EI+): m/z [M]+ calcd for C26H34OSi2: 418.2148; found: 418.2152

    • The role of MeCN is currently unclear. For the reports on the formation of N-methyl- and N-ethylnitrilium ions with MeCN in the presence of MR, see:
    • 22a Meerwein H, Laasch P, Mersch R, Spille J. Chem. Ber. 1956; 89: 209
    • 22b Gordon J, Turrell G. J. Org. Chem. 1959; 24: 269
  • 23 Bourget L, Mutin PH, Vioux A, Frances JM. J. Polym. Sci., Part A: Polym. Chem. 1998; 36: 2415
  • 24 Kira M, Hino T, Sakurai H. J. Am. Chem. Soc. 1992; 114: 6697
    • 25a Olah GA, Li X.-Y, Wang Q, Rasul G, Prakash GK. S. J. Am. Chem. Soc. 1995; 117: 8962
    • 25b Olah GA, Doggweiler H, Felberg JD, Frohlich S. J. Org. Chem. 1985; 50: 4847
  • 26 Charpentier PA, Li X, Sui R. Langmuir 2009; 25: 3748
  • 27 For detailed procedures, see the Supporting Information