Synlett 2012(6): 907-912  
DOI: 10.1055/s-0031-1290618
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Convenient Solid-Phase Synthesis of Coumarins by TMSOTf-Catalyzed Intramolecular Seleno-Arylation of Tethered Alkenes

E. Tang*a,b, Wen Lib, Zhangyong Gaob
a Key Laboratory of Medicinal Chemistry of Natural Resource (Yunnan University), Ministry of Education, P. R. of China
b School of Chemical Science and Technology, Yunnan University, No 2 Green Lake North Road, Kunming 650091, P. R. of China
Fax: +86(871)5033725; e-Mail: tange@ynu.edu.cn;
Further Information

Publication History

Received 12 December 2011
Publication Date:
15 March 2012 (online)

Abstract

TMSOTf-catalyzed intramolecular seleno-arylation of tethered alkenes was performed using polystyrene-supported succinimidyl selenide as the selenium source. This catalytic process provides an efficient method for the regioselective synthesis of dihydrocoumarins possessing a seleno functionality, followed by syn elimination of selenoxides to provide coumarins in good yields and purities. Suzuki cross-coupling reaction of the resin-bound bromodihydrocoumarin was also performed, and biphenyl coumarin was obtained by subsequent cleavage of selenium linker.

    References and Notes

  • 1 Zhang L. Meng TH. Fan RH. Wu J. J. Org. Chem.  2007,  72:  7279 
  • 2 Garazd MM. Garazd YL. Khilya VP. Khim. Prir. Soedin.  2003,  39:  47 
  • 3 Patil AD. Freyer AJ. Eggleston DS. Haltiwanger RC. Bean MF. Taylor PB. Caranfa MJ. Breen AL. Bartus HR. Johnson RK. Hertzberg RP. Westley JW. J. Med. Chem.  1993,  36:  4131 
  • 4 Wu J, Yang Z, Fathi R, and Zhu Q. inventors; US  2004002538. 
  • 5 Guilet D. Hélesbeux J.-J. Séraphin D. Sévenet T. Richomme P. Bruneton J. J. Nat. Prod.  2001,  64:  563 
  • 6a Köhler I. Jenett-Siems K. Mockenhaupt FP. Siems K. Jakupovic J. González JC. Hernández MA. Ibarra RA. Berendsohn WG. Bienzle U. Eich E. Planta Med.  2001,  67:  89 
  • 6b Argotte-Ramos R. Ramírez-Avila G. Rodríguez-Gutiérrez MDC. Ovilla-Munõz M. Lanz-Mendoza H. Rodríguez MH. González-Cortazar M. Alvarez L. J. Nat. Prod.  2006,  69:  1442 
  • 7 Verotta L. Lovaglio E. Vidari G. Finzi PV. Neri MG. Raimondi A. Parapini S. Taramelli D. Riva A. Bombardelli E. Phytochemistry  2004,  65:  2867 
  • For selected examples, see:
  • 8a Alexander VM. Bhat RP. Samant SD. Tetrahedron Lett.  2005,  46:  6957 
  • 8b Hoefnagel AJ. Gennewagh EA. Downing RS. Bekkum HV. J. Chem. Soc., Chem. Commun.  1995,  225 
  • 8c Wu J. Diao T.-N. Sun W. Li Y. Synth. Commun.  2006,  36:  2949 
  • 8d Sharma GVM. Reddy JJ. Lakshmi PS. Krishna PR. Tetrahedron Lett.  2005,  46:  6119 
  • 9 Manhas MS. Ganguly SN. Mukherjee S. Jain AK. Bose AK. Tetrahedron Lett.  2006,  47:  2423 
  • 10 Kumar V. Tomar S. Patel R. Yousaf A. Parmar VS. Malhotra SV. Synth. Commun.  2008,  38:  2646 
  • 11 Gunnewegh EA. Hoefnagel AJ. van Bekkum H. J. Mol. Catal. A: Chem.  1995,  100:  87 
  • For selected examples, see:
  • 12a Yamamoto Y. Kirai N. Org. Lett.  2008,  10:  5513 
  • 12b Fernandes T. Vaz BG. Eberlin MN. Silva AJM. Costa PRR. J. Org. Chem.  2010,  75:  7085 
  • 12c Shi Z. He C. J. Org. Chem.  2004,  69:  3669 
  • 12d Jia CG. Piao DG. Oyamada JZ. Lu WJ. Kitamura T. Fujiwara Y. Science  2000,  287:  1992 
  • 12e Fürstner A. Mamane V. J. Org. Chem.  2002,  67:  6264 
  • 12f Pastine SJ. Youn SW. Sames D. Org. Lett.  2003,  5:  1055 
  • 12g Youn SW. Pastine SJ. Sames D. Org. Lett.  2004,  6:  581 
  • 12h Fillion E. Dumas AM. Kuropatwa BA. Malhotra NR. Sitler TC. J. Org. Chem.  2006,  71:  409 
  • For selected examples, see:
  • 13a Rayabarapu DK. Sambaiah T. Cheng C.-H. Angew. Chem. Int. Ed.  2001,  40:  1286 
  • 13b Yoneda E. Sugioka T. Hirao K. Zhang S.-W. Takahashi S. J. Chem. Soc., Perkin Trans. 1  1998,  477 
  • 13c Trost BM. Toste FD. J. Am. Chem. Soc.  1996,  118:  6305 
  • 13d Jia C. Piao D. Kitamura T. Fujiwara Y. J. Org. Chem.  2000,  65:  7516 
  • 13e Kadnikov DV. Larock RC. Org. Lett.  2000,  2:  3643 
  • 13f Kadnikov DV. Larock RC. J. Org. Chem.  2003,  68:  9423 
  • 13g Park KH. Jung G. Chung YK. Synlett  2004,  2541 
  • For selected examples, see:
  • 14a Jia C. Piao D. Kitamura T. Fujiwara Y. J. Org. Chem.  2000,  65:  7516 
  • 14b Kitamura T. Yamamoto K. Kotani M. Oyamada J. Jia C. Fujiwara Y. Bull. Chem. Soc. Jpn.  2003,  76:  1889 
  • 14c Kotani M. Yamamoto K. Oyamada J. Fujiwara Y. Kitamura T. Synthesis  2004,  1455 
  • 14d Oyamada J. Kitamura T. Tetrahedron  2006,  62:  6918 
  • 14e Shi Z. He C. J. Org. Chem.  2004,  69:  3669 
  • 14f Li K. Zeng Y. Neuenswander B. Tunge JA. J. Org. Chem.  2005,  70:  6515 
  • 15 Hajra S. Maji B. Karmakar A. Tetrahedron Lett.  2005,  46:  8599 
  • 16a In Organic Synthesis on Solid-Phase   Dörwald FZ. Wiley-VCH; Weinheim: 2000. 
  • 16b In Handbook of Combinatorial Chemistry   Nicolaou KC. Hanko R. Hartwig W. Wiley-VCH; Weinheim: 2002. 
  • 16c Eynde JJV. Rutot D. Tetrahedron  1999,  55:  2687 
  • 16d Watson BT. Christiansen GE. Tetrahedron Lett.  1998,  39:  6087 
  • 17a Wu J. Liao Y. Yang Z. J. Org. Chem.  2001,  66:  3642 
  • 17b Bussolari JC. Rehborn DC. Combs DW. Tetrahedron Lett.  1999,  40:  1241 
  • 18a Song A. Zhang J.-H. Lam KS. J. Comb. Chem.  2004,  6:  112 
  • 18b Song A. Zhang J.-H. Lebrilla CB. Lam KS. J. Comb. Chem.  2004,  6:  604 
  • 19 Watson BT. Christiansen GE. Tetrahedron Lett.  1998,  39:  6087 
  • 20a Huang X. Tang E. Xu WM. J. Comb. Chem.  2005,  7:  802 
  • 20b Tang E. Huang X. Xu WM. Tetrahedron  2004,  60:  9963 
  • 20c Xu WM. Huang X. Tang E. J. Comb. Chem.  2005,  7:  726 
  • 20d Tang E. Chen BZ. Zhang LP. Li W. Lin J. Synlett  2011,  707 
  • 21 Petragnani N. Stefani HA. Valduga CJ. Tetrahedron  2001,  57:  1411 
  • 22 Nicolaou KC. Pfefferkorn JA. Cao GQ. Kim S. Kessabi J. Org. Lett.  1999,  1:  807 
  • 23 Majumder PL. Chatterjee S. Mukhoti N. J. Indian Chem. Soc.  2001,  78:  743 
  • 24 Nicolaou KC. Pastor J. Barluenga S. Winssinger N. Chem. Commun.  1998,  1947 
  • 25 Xu WM. Tang E. Huang X. Tetrahedron  2005,  61:  501 
  • 26 Hori T. Sharpless KB. J. Org. Chem.  1979,  44:  4208 
27

Typical Procedure for the Preparation of Polystyrene-Supported Allyl Selenide (2)
To a suspension of the swollen polystyrene-supported selenenyl bromide (1, Br: 0.99 mmol/g, 2.5 g) in dry THF-DMF (v/v = 5:1, 30 mL) was added NaBH4 (5 mmol) under nitrogen atmosphere at 40 ˚C. After stirring for 8 h at 40 ˚C, 3-bromoprop-1-ene (5.5 mmol) was added dropwise under nitrogen atmosphere, and stirred for another 12 h. The resin 2 was collected by filtration, washed with THF (2 × 20 mL), MeOH (2 × 20 mL), and CH2Cl2 (2 × 20 mL), and dried in vacuum.

28

Typical Procedure for the Preparation of 6-Methyl-4-phenyl-3-(phenylselenyl)-2 H -chromen-2-one [(±)-6]
To an oven-dried flask (25 mL) was added polystyrene-supported succinimidyl selenide (PSSS, 0.27 g, 1.05 mmol) in dry CH2Cl2 (10 mL) under nitrogen atmosphere, and the solution was cooled at -78 ˚C. Trimethylsilyl trifluoro-methanesulfonate (TMSOTf, 0.022 g, 0.1 mmol) was added. After stirring for 0.5 h at -78 ˚C, p-tolyl cinnamate (0.238 g, 1.0 mmol) was added under nitrogen atmosphere. The mixture was stirred for another 2 h at -78 ˚C and then stored in a freezer at -20 ˚C for 8 h. Saturated aq NaHCO3 (5 mL) was poured into the flask to quench reaction mixture. The organic phase was separated, and the aqueous phase was extracted with fresh portion of CH2Cl2 (25 mL). The extracts were combined, washed with H2O, and dried over MgSO4. After filtering and concentrating under reduced pressure by rotary evaporation at r.t, the oily residue was subjected to preparative TLC on silica gel with EtOAc-light PE (1:9) as eluent to give 197 mg of (±)-6 (50% isolated yield).

29

General Procedure for the Preparation of 2 H -Chromen-2-one (5)
To a suspension of the swollen resin 2 (1.0 g) in dry CH2Cl2 (15 mL) was added NCS (0.668 g, 5.0 mmol) at 0 ˚C. The mixture was stirred for 0.5 h at 0 ˚C and 2 h at r.t. After filtrating and washing with dry CH2Cl2 (3 × 15 mL), PSSS was suspended with dry CH2Cl2 (15 mL) and cooled to -78 ˚C. TMSOTf (0.022 g, 0.10 mmol) was added. After stirring for 0.5 h at -78 ˚C, substituted phenyl acrylate 3 (5.0 mmol) was added under nitrogen atmosphere. The suspension was stirred for another 2 h at -78 ˚C and then stored in a freezer at -20 ˚C for 8 h. Saturated aq NaHCO3 (5 mL) was poured into the flask to quench the reaction mixture. 3-Polystyrene-supported seleno-3,4-2H-chromen-2-one [(±)-4] was collected by filtration, washed with THF (2 × 20 mL), Et2O (2 × 20 mL), THF-H2O (3:1, 2 × 20 mL), H2O (2 × 20 mL), THF (2 × 20 mL), benzene (2 × 20 mL), MeOH (2 × 20 mL), and CH2Cl2 (2 × 20 mL), and dried under vacuum. The washed resin (±)-4 was suspended in THF (15 mL). To the mixture was added 30% aq H2O2 (1.2 mL). The mixture was stirred for 1 h at 0 ˚C and then for another 20 min at r.t. The mixture was filtered, and the resin was washed with CH2Cl2 (2 × 15 mL). The filtrate was washed with H2O (2 × 30 mL), dried over MgSO4, and evaporated to dryness in vacuum to afford 2H-chromen-2-ones 5.

30

Typical Procedure for the Preparation of 4-Biphenyl-2 H -chromen-2-one (10)
To a suspension of the swollen resin (±)-4d (0.5 g) in dry THF (15 mL) was added Pd(OAc)2 (0.0056 g, 0.025 mmol), phenylboronic acid (0.61 g, 5.0 mmol), KF (0.58 g, 10.0 mmol), and 2-(dicyclohexylphosphino)biphenyl [o-(biphenyl)PCy2] (0.175 g, 0.5 mmol) under a nitrogen atmosphere. The reaction mixture was stirred at r.t. for 24 h. Resin (±)-9 was collected by filtration, washed with THF (2 × 20 mL), Et2O (2 × 20 mL), THF-H2O (3:1, 2 × 20 mL), H2O (2 × 20 mL), THF (2 × 20 mL), benzene (2 × 20 mL), MeOH (2 × 20 mL), and CH2Cl2 (2 × 20 mL), and dried in vacuum. The washed resin (±)-9 was suspended in THF (15 mL). To the mixture was added 30% aq H2O2 (1.5 mL) and stirred for 1.5 h at 0 ˚C, and stirred for another 20 min at r.t. The mixture was filtered, and the resin was washed with CH2Cl2 (2 × 15 mL). The filtrate was washed with H2O (2 × 30 mL), dried over MgSO4, and evaporated to dryness under vacuum to afford 4-biphenyl-2H-chromen-2-one (10).

31

6-Methyl-4-phenyl-3-(phenylselenyl)-2 H -chromen-2-one [(±)-6]
Yellow oil. ¹H NMR (400 MHz, CDCl3): δ = 7.35-7.07 (11 H, m), 6.86 (2 H, dt, J 1 = 8.4 Hz, J 2 = 2.8 Hz), 4.58 (1 H, d, J = 10.8 Hz), 4.04 (1 H, d, J = 10.4 Hz), 2.33 (3 H, s). ¹³C NMR (100 MHz, CDCl3): δ = 170.10, 148.59, 135.90, 135.65, 135.47, 129.97, 129.07, 128.96, 128.78, 128.54, 128.44, 127.79, 121.12, 79.10, 51.07, 20.96. IR (KBr): ν = 1741, 1496, 1431, 1208, 1010, 736, 693 cm. HRMS:
m/z [M]+ calcd for C22H18O2Se: 394.0472; found: 394.0470.