Synlett 2012; 23(6): 851-854
DOI: 10.1055/s-0031-1290488
letter
© Georg Thieme Verlag Stuttgart · New York

α,β-Unsaturated δ-Valerolactones through RCM–Isomerization Sequence

Bernd Schmidt*
Universität Potsdam, Institut für Chemie (Organische Synthesechemie), Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany, Fax: +49(331)9775059   Email: bernd.schmidt@uni-potsdam.de
,
Oliver Kunz
Universität Potsdam, Institut für Chemie (Organische Synthesechemie), Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany, Fax: +49(331)9775059   Email: bernd.schmidt@uni-potsdam.de
› Author Affiliations
Further Information

Publication History

Received: 11 January 2012

Accepted after revision: 03 February 2012

Publication Date:
16 March 2012 (online)


Abstract

α,β-Unsaturated δ-lactones are accessible via a sequential ring-closing metathesis (RCM) double-bond migration reaction starting from butenoates of allyl alcohols. This approach proceeds efficiently with lower catalyst loadings and higher initial substrate concentrations compared to the alternative RCM of acrylates derived from homoallylic alcohols.

Supporting Information

 
  • References

  • 1 Ram ReddyM. V, Rearick JP, Hoch N, Ramachandran PV. Org. Lett. 2001; 3: 19
  • 2 BouzBouz S, Cossy J. Org. Lett. 2003; 5: 1995
  • 3 Enders D, Lenzen A, Müller M. Synthesis 2004; 1486
  • 4 Held C, Fröhlich R, Metz P. Adv. Synth. Catal. 2002; 344: 720
  • 5 Mulzer J, Öhler E. Chem. Rev. 2003; 103: 3753
  • 6 Ghosh AK, Wang Y, Kim JT. J. Org. Chem. 2001; 66: 8973
  • 7 Mulzer J, Öhler E. Top. Organomet. Chem. 2004; 13: 269
  • 8 Fürstner A, Langemann K. J. Am. Chem. Soc. 1997; 119: 9130
  • 9 Fürstner A, Thiel OR, Ackermann L, Schanz H.-J, Nolan SP. J. Org. Chem. 2000; 65: 2204
  • 10 Nakashima K, Kikuchi N, Shirayama D, Miki T, Ando K, Sono M, Suzuki S, Kawase M, Kondoh M, Sato M, Tori M. Bull. Chem. Soc. Jpn. 2007; 80: 387
  • 11 Schmidt B, Geißler D. ChemCatChem 2010; 2: 423
  • 12 Crimmins MT, King BW. J. Am. Chem. Soc. 1998; 120: 9084
  • 13 Rutjes FP. J. T, Kooistra M, Hiemstra H, Schoemaker HE. Synlett 1998; 192
  • 14 Carda M, Rodríguez S, González F, Castillo E, Villanueva A, Marco JA. Eur. J. Org. Chem. 2002; 2649
  • 15 Schmidt B, Biernat A. Synlett 2007; 2375
  • 16 Schmidt B, Krehl S. Chem. Commun. 2011; 47: 5879
  • 17 Kato H, Ishigame T, Oshima N, Hoshiya N, Shimawaki K, Arisawa M, Shuto S. Adv. Synth. Catal. 2011; 353: 2676
  • 18 Andreana PR, McLellan JS, Chen YC, Wang PG. Org. Lett. 2002; 4: 3875
  • 19 Binder JT, Kirsch SF. Chem. Commun. 2007; 4164
  • 20 Menz H, Kirsch SF. Org. Lett. 2009; 11: 5634
  • 21 Cros F, Pelotier B, Piva O. Eur. J. Org. Chem. 2010; 5063
  • 22 Baktharaman S, Selvakumar S, Singh VK. Tetrahedron Lett. 2005; 46: 7527
  • 23 Qi J, Xie X, He J, Zhang L, Ma D, She X. Org. Biomol. Chem. 2011; 9: 5948
  • 24 Lorenz K, Lichtenthaler FW. Tetrahedron Lett. 1987; 28: 6437
  • 25 Favre A, Carreaux F, Deligny M, Carboni B. Eur. J. Org. Chem. 2008; 4900
  • 26 Carreaux F, Favre A, Carboni B, Rouaud I, Boustie J. Tetrahedron Lett. 2006; 47: 4545
  • 27 Mukai C, Hirai S, Hanaoka M. J. Org. Chem. 1997; 62: 6619
  • 28 Fogg DE, dos Santos EN. Coord. Chem. Rev. 2004; 248: 2365
  • 29 Schmidt B. Pure Appl. Chem. 2006; 78: 469
  • 30 Schmidt B. J. Mol. Catal. A 2006; 254: 53
  • 31 Schmidt B. Eur. J. Org. Chem. 2004; 1865
  • 32 Sutton AE, Seigal BA, Finnegan DF, Snapper ML. J. Am. Chem. Soc. 2002; 124: 13390
  • 33 Schmidt B. Eur. J. Org. Chem. 2003; 816
  • 34 Schmidt B. Chem. Commun. 2004; 742
  • 35 Schmidt B. Synlett 2004; 1541
  • 36 Schmidt B. J. Org. Chem. 2004; 69: 7672
  • 37 Forman GS, McConnell AE, Tooze RP, van Rensburg WJ, Meyer WH, Kirk MM, Dwyer CL, Serfontein DW. Organometallics 2005; 24: 4528
  • 38 Schmidt B, Kunz O. Eur. J. Org. Chem. 2012; 1008
  • 39 Menozzi C, Dalko PI, Cossy J. Synlett 2005; 2449
  • 40 Schmidt B, Hermanns J. Curr. Org. Chem. 2006; 10: 1363
  • 41 Rama RaoA. V, Mysorekar SV, Gurjar MK, Yadav JS. Tetrahedron Lett. 1987; 28: 2183
  • 42 Schmidt B, Nave S. Adv. Synth. Catal. 2007; 349: 215
  • 43 Neises B, Steglich W. Angew. Chem., Int. Ed. Engl. 1978; 17: 522
  • 44 Fukatsu T, Onodera K.-i, Ohta Y, Oba Y, Nakamura H, Shintani T, Yoshioka Y, Okamoto T, ten Lohuis M, Miller DJ, Kawachi M, Ojika M. J. Nat. Prod. 2007; 70: 407
  • 45 Cen-Pacheco F, Villa-Pulgarin JA, Mollinedo F, Norte M, Daranas AH, Fernández JJ. Eur. J. Med. Chem. 2011; 3302
  • 46 Representative Example: Synthesis of 1iA solution of 5i (200 mg, 0.7 mmol) in toluene (7.0 mL) was preheated to 80 °C, and catalyst B (6.0 mg, 1.0 mol%) was added. After the starting material was fully consumed (TLC, approx. 30 min), Et3SiH (22 μL, 0.14 mmol) was added, and the solution was heated to reflux for 1 h. All volatiles were evaporated, and the residue was purified by chromatography on silica (eluent: hexane–MTBE = 5:1) to give α-pyrone 1i (152 mg, 85%) as a colorless oil. [α]24 D +117.3 (c 0.56, CH2Cl2). 1H NMR (300 MHz, CDCl3): δ = 6.90 (ddd, J = 9.6, 5.8, 2.7 Hz, 1 H), 6.00 (dm, J = 9.7 Hz, 1 H), 4.19 (dt, J = 11.1, 5.0 Hz, 1 H), 4.00 (qm, J = 6.3 Hz, 1 H), 2.57–2.35 (2 H), 1.22 (d, J = 6.3 Hz, 3 H), 0.88 (9 H), 0.09 (3 H), 0.08 (3 H). 13C NMR (75 MHz, CDCl3): δ = 168.5 (0), 145.1 (1), 121.1 (0), 81.7 (1), 69.3 (1), 25.8 (3), 24.3 (2), 20.2 (3), 18.0 (0), –4.5 (3), –4.7 (3). IR (neat): ν = 2957 (m), 2931 (m), 2897 (w), 1723 (s), 1383 (m), 1249 (s), 1075 (s). ESI-MS: m/z = 239 (5), 257 (35), 279 (100) [M + Na]+. ESI-HRMS: m/z calcd for C13H24NaO3Si+ [M + Na]+: 279.1392; found: 279.1375. Anal. Calcd (%) for C13H24O3Si (256.41): C, 60.9, H, 9.4. Found: C, 60.7; H, 9.6