Synlett 2012; 23(20): 2997-2998
DOI: 10.1055/s-0031-1290470
spotlight
© Georg Thieme Verlag Stuttgart · New York

Potassium Thioacetate

Silvia M. Soria-Castro
INFIQC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina   Email: ssoriacastro@fcq.unc.edu.ar
› Author Affiliations
Further Information

Publication History

Publication Date:
16 November 2012 (online)

Introduction

Potassium thioacetate (AcSK) is an off-white to light-brown crystalline powder that is air sensitive, hygroscopic, and commercially available. It is soluble in water and stable under standard temperature and pressure (m.p. 173–176 °C).

This reagent is widely used as a sulfur source in the synthesis of sulfur-containing organic compounds. The formation of C–S bonds can be easily accomplished by reacting potassium thioacetate with aryl, benzyl, alkyl and vinyl halides or arenediazonium salts, to obtain the corresponding thioesters. A later deprotection allows straightforward access to the thiol since acyl groups may be removed under mild conditions.

Thus, potassium thioacetate is a versatile reagent that can participate in numerous reactions such as nucleophilic substitutions, transition-metal-catalyzed couplings, photo-induced substitutions, vinylic substitutions and reductive amidation of nitro arenes. Therefore, this reagent has been employed for the synthesis of heterocycles,[ 1 ] polymers,[ 2 ] transition-metal ligands,[ 3 ] nanoparticles,[ 4 ] bioactive compounds[ 5 ] and macromolecular inclusion complexes.[ 6 ]

 
  • References

  • 1 Elhalem E, Pujol CA, Damonte EB, Rodriguez JB. Tetrahedron 2010; 66: 3332
  • 2 Munro NH, Hanton LR, Moratti SC, Robinson BH. Carbohyd. Polym. 2009; 78: 137
  • 3 Jin MJ, Sarkar SM, Lee DH, Qiu H. Org. Lett. 2008; 10: 1235
    • 4a Zhu J, Waengler C, Lennox RB, Schirrmacher R. Langmuir 2012; 28: 5508
    • 4b Zhang S, Leem G, Lee TR. Langmuir 2009; 25: 13855
    • 4c Huc V, Pelzer KJ. Colloid. Interf. Sci. 2008; 318: 1
    • 5a Ma HJ, Li YH, Zhao QF, Zhang T, Xie RL, Mei XD, Ning J. J. Agric. Food Chem. 2010; 58: 4356
    • 5b Ohta C, Kuwabe S, Shiraishi T, Shinohara I, Araki H, Sakuyama S, Makihara T, Kawanaka Y, Ohuchida S, Seko T. J. Org. Chem. 2009; 74: 8298
    • 5c Wash PL, Hoffman TZ, Wiley BM, Bonnefous C, Smith ND, Sertic MS, Lawrence CM, Symons KT, Nguyen PM, Lustig KD, Guo X, Annable T, Noble SA, Hager JH, Hassig CA, Malecha JW. Bioorg. Med. Chem. Lett. 2008; 18: 6482
  • 6 Wang A, Li W, Zhang P, Ling CC. Org. Lett. 2011; 13: 3572
  • 7 Park N, Park K, Jang M, Lee S. J. Org. Chem. 2011; 76: 4371
  • 8 Schmidt LC, Rey V, Peñéñory AB. Eur. J. Org. Chem. 2006; 2210
  • 9 Lei M-Y, Xiao Y-J, Liu W-M, Fukamizu K, Chiba S, Ando K, Narasaka K. Tetrahedron 2009; 65: 6888
  • 10 Bhattacharya A, Purohit VC, Suarez V, Tichkule R, Parmer G, Rinaldi F. Tetrahedron Lett. 2006; 47: 1861
  • 11 Liu R, Li Y-H, Chang J, Xiao Q, Zhu H.-J. Asian J. Chem. 2010; 22: 3059
  • 12 Tao XL, Lei M, Wang YG. Synthetic Commun. 2007; 37: 399
  • 13 Liras M, García O, Quijada-Garrido I, Páris R. Macromolecules 2011; 44: 1335
  • 14 Gao D, Scholz F, Nothofer HG, Ford WE, Scherf U, Wessels JM, Yasuda A, von Wrochem F. J. Am. Chem. Soc. 2011; 133: 5921