References and Notes
<A NAME="RD52011ST-1">1</A>
Multicomponent Reactions
Zhu J.
Bienaymé H.
Wiley-VCH;
Weinheim:
2005.
<A NAME="RD52011ST-2A">2a</A>
Harwood LM.
Vickers RJ. In Synthetic Applications of
1.3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural
Products
Padwa A.
Pearson WH.
Wiley;
New
York:
2003.
p.169-252
<A NAME="RD52011ST-2B">2b</A>
Padwa A.
1,3-Dipolar Cycloaddition Chemistry
Wiley;
New
York:
1984.
<A NAME="RD52011ST-2C">2c</A>
Coldham I.
Hufton R.
Chem. Rev.
2005,
105:
2765
<A NAME="RD52011ST-2D">2d</A>
Pandey G.
Banerjee P.
Gadre SR.
Chem.
Rev.
2006,
106:
4484
<A NAME="RD52011ST-2E">2e</A>
Nájera C.
Sansano J.
Org. Biomol. Chem.
2009,
7:
4567
<A NAME="RD52011ST-2F">2f</A>
Chen Q.-A.
Wang D.-S.
Zhou Y.-G.
Chem.
Commun.
2010,
46:
4043
<A NAME="RD52011ST-2G">2g</A>
Bonin B.
Chauveau A.
Micouin L.
Synlett
2006,
2349
<A NAME="RD52011ST-2H">2h</A>
Adrio J.
Carretero JC.
Chem. Commun.
2011,
47:
6784
<A NAME="RD52011ST-2I">2i</A>
Huisgen R.
Niklas K.
Heterocycles
1984,
22:
21
<A NAME="RD52011ST-3A">3a</A>
Galliford CV.
Scheidt KA.
Angew. Chem. Int. Ed.
2007,
46:
8748
<A NAME="RD52011ST-3B">3b</A>
Krapcho AP.
Synthesis
1974,
383
<A NAME="RD52011ST-3C">3c</A>
Sannigrahi M.
Tetrahedron
1999,
55:
9007
<A NAME="RD52011ST-3D">3d</A>
Padwa A.
Bur SK.
Tetrahedron
2007,
63:
5341
<A NAME="RD52011ST-3E">3e</A>
Francke W.
Kitching W.
Curr. Org. Chem.
2001,
5:
233
<A NAME="RD52011ST-3F">3f</A>
Rosenberg S.
Leino R.
Synthesis
2009,
2651
<A NAME="RD52011ST-4A">4a</A>
Zhou F.
Liu Y.-L.
Zhou J.
Adv. Synth. Catal.
2010,
352:
1381
<A NAME="RD52011ST-4B">4b</A>
Marti C.
Carreira EM.
Eur. J. Org. Chem.
2003,
2209
<A NAME="RD52011ST-5A">5a</A>
Kornet MJ.
Thio AP.
J.
Med. Chem.
1976,
19:
892
<A NAME="RD52011ST-5B">5b</A>
Okita T.
Isobe M.
Tetrahedron
1994,
50:
11143
<A NAME="RD52011ST-5C">5c</A>
Rosenmond P.
Hosseini-Merescht M.
Bub C.
Liebigs Ann.
Chem.
1994,
2:
151
<A NAME="RD52011ST-5D">5d</A>
Abou-Gharbia MA.
Doukas PH.
Heterocycles
1979,
12:
637
<A NAME="RD52011ST-6A">6a</A>
Shebahar PR.
Williams RM.
J. Am. Chem. Soc.
2000,
122:
5666
<A NAME="RD52011ST-6B">6b</A>
Sebahar PR.
Usui T.
Williams RM.
Tetrahedron
2002,
58:
6311
<A NAME="RD52011ST-7A">7a</A>
Antonchick AP.
Gerding-Reimers C.
Catarinella M.
Schürmann M.
Preut H.
Ziegler S.
Rauh d.
Waldmann H.
Nature Chem.
2010,
2:
735
<A NAME="RD52011ST-7B">7b</A>
Karthikeyan K.
Saranya N.
Kalaivani A.
Perumal PT.
Synlett
2010,
2751
<A NAME="RD52011ST-7C">7c</A>
Karthikeyan K.
Sivakumar PM.
Doble M.
Perumal PT.
Eur. J. Med. Chem.
2010,
45:
3446
<A NAME="RD52011ST-7D">7d</A>
Shanmugam P.
Viswambharan B.
Selvakumar K.
Madhavan S.
Tetrahedron Lett.
2008,
49:
2611
<A NAME="RD52011ST-7E">7e</A>
Hemamalini A.
Nagarajan S.
Ravinder P.
Subramanian V.
Das TM.
Synthesis
2011,
2495
<A NAME="RD52011ST-7F">7f</A>
Purushothaman S.
Prasanna R.
Niranjana P.
Raghunathan R.
Nagaraj S.
Rengusamy R.
Bioorg. Med. Chem. Lett.
2010,
20:
7291
<A NAME="RD52011ST-7G">7g</A>
Kumar RR.
Perumal S.
Senthilkumar P.
Yogeeswari P.
Sriram D.
J. Med. Chem.
2008,
51:
5731
<A NAME="RD52011ST-7H">7h</A>
Girgis AS.
Eur. J. Med. Chem.
2009,
1257
<A NAME="RD52011ST-7I">7i</A>
Nair V.
Mathai S.
Augustine A.
Viji S.
Radhakrishnan KV.
Synthesis
2004,
2617
<A NAME="RD52011ST-7J">7j</A>
Soret A.
Müller C.
Guillot R.
Blanco L.
Deloisy S.
Tetrahedron
2011,
67:
698
<A NAME="RD52011ST-8A">8a</A>
Warrener RN.
Butler DN.
Aldrichimica Acta
1997,
30:
119
<A NAME="RD52011ST-8B">8b</A>
The stereochemistry
of the major isomer of 31a was confirmed
from the X-ray crystal structure analysis.
<A NAME="RD52011ST-8C">8c</A> For 1,3-indandiones derivatives
and their biological activities, see:
Kabat HJ.
Pharmacology
1994,
80:
160
<A NAME="RD52011ST-8D">8d</A>
The stereochemistry
of 33 and 34 was
confirmed from the X-ray crystal structure analysis.
<A NAME="RD52011ST-8E">8e</A>
Based on the X-ray structure
analyses of 36 and 37 (Figure
[³]
), and 46b the stereochemistry
of other products in Schemes
[5]
and
[6]
was assigned.
<A NAME="RD52011ST-9">9</A>
Crystallographic data of all X-ray
crystal structures reported in this work have been deposited with
the Cambridge Crystallographic Data Centre under the following deposition numbers:
CCDC 847073 (13), CCDC 847074 (14), CCDC 847075 (22),
CCDC 847076 (30a), CCDC 847077 (31a), CCDC 847078 (33),
CCDC 847079 (34), CCDC 847080 (36), CCDC 847081 (37),
CCDC 847082 (43), and CCDC 847083 (46b).
Typical
Experimental Procedure
A dry flask containing N-methylisatin (5a,
161 mg, 1 mmol), sarcosine (6, 98 mg, 1.1
mmol), and the norbornene dipolarophile 7a (213
mg, 1 mmol) in EtOH (3 mL) was heated at 80 ˚C
for 20 h under an inert atmosphere. After completion of the reaction
(TLC monitoring), the flask containing the reaction mixture was
cooled to r.t., and the solvent was evaporated under vacuum. Purification
of the resulting crude reaction mixture by column chromatography on
neutral alumina (EtOAc-hexanes = 60:40)
gave the product 13 (220 mg, 55%).
Spectral Data for Compound 13
Colorless
solid; mp 223-225 ˚C (MeOH-hexanes = 1:1).
IR (KBr): 2948, 2906, 1750, 1717, 1606, 1467, 1437 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 7.56 (d, 1 H, J = 7.6 Hz),
7.34 (t, 1 H, J = 7.6
Hz), 7.11 (t, 1 H, J = 7.6
Hz), 6.85 (d, 1 H, J = 7.6
Hz), 4.88 (s, 1 H), 4.56 (s, 1 H), 3.68 (s, 3 H), 3.60 (s, 3 H),
3.47 (t, 1 H, J = 8.2
Hz), 3.20 (s, 3 H), 3.08 (d, 1 H, J = 9.6
Hz), 3.01-2.98 (m, 1 H), 2.87 (d, 1 H, J = 9.6
Hz), 2.89-2.85 (m, 1 H), 2.65 (d, 1 H, J = 8.2
Hz), 1.96 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3): δ = 178.2, 171.1, 144.0, 129.4, 127.8,
126.1, 122.7, 108.3, 82.1, 80.4, 74.2, 58.4, 55.8, 52.2, 52.1, 51.5,
50.7, 47.5, 35.1, 26.3. MS (CI): m/z (%) = 402 (100) [M + 2]+,
401 (30) [M + 1]+ 195
(8), 175 (7), 111 (30), 79 (15). ESI-HRMS: m/z calcd
for C21H24N2O6Na [M + Na]+:
423.1532; found: 423.1532 [M + Na]+.