RSS-Feed abonnieren
DOI: 10.1055/s-0031-1290342
Unactivated Norbornenes in [3+2] Cycloadditions: Remarkably Stereo-controlled Entry into Norbornane-Fused Spirooxindolopyrrolidines, Spiro-1,3-indandionolylpyrrolidines, and Spirooxindolopyrrolizidines
Publikationsverlauf
Publikationsdatum:
08. Februar 2012 (online)

Abstract
1,3-dipolar cycloaddition reactions of azomethine ylides with unactivated norbornene dipolarophiles and a highly diastereoselective synthesis of the novel norbornane-fused spirooxindolopyrrolidines, spiroacenaphthylenolylpyrrolidines, spiro-1,3-indan-dionolylpyrrolidines, and spirooxindolopyrrolizidines having an array of stereocenters are reported. The stereoselective synthesis of spirooxindolopyrrolizidines with eight stereocenters was demonstrated. Single-crystal X-ray structural analyses were performed to unambiguously establish the structure and stereochemistry of the key products.
Key words
1,3-dipolar cycloaddition - oxindoles - spiro compounds - stereoselective synthesis - ylides
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1
Multicomponent Reactions
Zhu J.Bienaymé H. Wiley-VCH; Weinheim: 2005.Reference Ris Wihthout Link - 2a
Harwood LM.Vickers RJ. In Synthetic Applications of 1.3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural ProductsPadwa A.Pearson WH. Wiley; New York: 2003. p.169-252Reference Ris Wihthout Link - 2b
Padwa A. 1,3-Dipolar Cycloaddition Chemistry Wiley; New York: 1984.Reference Ris Wihthout Link - 2c
Coldham I.Hufton R. Chem. Rev. 2005, 105: 2765Reference Ris Wihthout Link - 2d
Pandey G.Banerjee P.Gadre SR. Chem. Rev. 2006, 106: 4484Reference Ris Wihthout Link - 2e
Nájera C.Sansano J. Org. Biomol. Chem. 2009, 7: 4567Reference Ris Wihthout Link - 2f
Chen Q.-A.Wang D.-S.Zhou Y.-G. Chem. Commun. 2010, 46: 4043Reference Ris Wihthout Link - 2g
Bonin B.Chauveau A.Micouin L. Synlett 2006, 2349Reference Ris Wihthout Link - 2h
Adrio J.Carretero JC. Chem. Commun. 2011, 47: 6784Reference Ris Wihthout Link - 2i
Huisgen R.Niklas K. Heterocycles 1984, 22: 21Reference Ris Wihthout Link - 3a
Galliford CV.Scheidt KA. Angew. Chem. Int. Ed. 2007, 46: 8748Reference Ris Wihthout Link - 3b
Krapcho AP. Synthesis 1974, 383Reference Ris Wihthout Link - 3c
Sannigrahi M. Tetrahedron 1999, 55: 9007Reference Ris Wihthout Link - 3d
Padwa A.Bur SK. Tetrahedron 2007, 63: 5341Reference Ris Wihthout Link - 3e
Francke W.Kitching W. Curr. Org. Chem. 2001, 5: 233Reference Ris Wihthout Link - 3f
Rosenberg S.Leino R. Synthesis 2009, 2651Reference Ris Wihthout Link - 4a
Zhou F.Liu Y.-L.Zhou J. Adv. Synth. Catal. 2010, 352: 1381Reference Ris Wihthout Link - 4b
Marti C.Carreira EM. Eur. J. Org. Chem. 2003, 2209Reference Ris Wihthout Link - 5a
Kornet MJ.Thio AP. J. Med. Chem. 1976, 19: 892Reference Ris Wihthout Link - 5b
Okita T.Isobe M. Tetrahedron 1994, 50: 11143Reference Ris Wihthout Link - 5c
Rosenmond P.Hosseini-Merescht M.Bub C. Liebigs Ann. Chem. 1994, 2: 151Reference Ris Wihthout Link - 5d
Abou-Gharbia MA.Doukas PH. Heterocycles 1979, 12: 637Reference Ris Wihthout Link - 6a
Shebahar PR.Williams RM. J. Am. Chem. Soc. 2000, 122: 5666Reference Ris Wihthout Link - 6b
Sebahar PR.Usui T.Williams RM. Tetrahedron 2002, 58: 6311Reference Ris Wihthout Link - 7a
Antonchick AP.Gerding-Reimers C.Catarinella M.Schürmann M.Preut H.Ziegler S.Rauh d.Waldmann H. Nature Chem. 2010, 2: 735Reference Ris Wihthout Link - 7b
Karthikeyan K.Saranya N.Kalaivani A.Perumal PT. Synlett 2010, 2751Reference Ris Wihthout Link - 7c
Karthikeyan K.Sivakumar PM.Doble M.Perumal PT. Eur. J. Med. Chem. 2010, 45: 3446Reference Ris Wihthout Link - 7d
Shanmugam P.Viswambharan B.Selvakumar K.Madhavan S. Tetrahedron Lett. 2008, 49: 2611Reference Ris Wihthout Link - 7e
Hemamalini A.Nagarajan S.Ravinder P.Subramanian V.Das TM. Synthesis 2011, 2495Reference Ris Wihthout Link - 7f
Purushothaman S.Prasanna R.Niranjana P.Raghunathan R.Nagaraj S.Rengusamy R. Bioorg. Med. Chem. Lett. 2010, 20: 7291Reference Ris Wihthout Link - 7g
Kumar RR.Perumal S.Senthilkumar P.Yogeeswari P.Sriram D. J. Med. Chem. 2008, 51: 5731Reference Ris Wihthout Link - 7h
Girgis AS. Eur. J. Med. Chem. 2009, 1257Reference Ris Wihthout Link - 7i
Nair V.Mathai S.Augustine A.Viji S.Radhakrishnan KV. Synthesis 2004, 2617Reference Ris Wihthout Link - 7j
Soret A.Müller C.Guillot R.Blanco L.Deloisy S. Tetrahedron 2011, 67: 698Reference Ris Wihthout Link - 8a
Warrener RN.Butler DN. Aldrichimica Acta 1997, 30: 119Reference Ris Wihthout Link - 8b
The stereochemistry of the major isomer of 31a was confirmed from the X-ray crystal structure analysis.
Reference Ris Wihthout Link - 8c For 1,3-indandiones derivatives
and their biological activities, see:
Kabat HJ. Pharmacology 1994, 80: 160Reference Ris Wihthout Link - 8d
The stereochemistry of 33 and 34 was confirmed from the X-ray crystal structure analysis.
Reference Ris Wihthout Link - 8e
Based on the X-ray structure analyses of 36 and 37 (Figure [³] ), and 46b the stereochemistry of other products in Schemes [5] and [6] was assigned.
Reference Ris Wihthout Link
References and Notes
Crystallographic data of all X-ray
crystal structures reported in this work have been deposited with
the Cambridge Crystallographic Data Centre under the following deposition numbers:
CCDC 847073 (13), CCDC 847074 (14), CCDC 847075 (22),
CCDC 847076 (30a), CCDC 847077 (31a), CCDC 847078 (33),
CCDC 847079 (34), CCDC 847080 (36), CCDC 847081 (37),
CCDC 847082 (43), and CCDC 847083 (46b).
Typical
Experimental Procedure
A dry flask containing N-methylisatin (5a,
161 mg, 1 mmol), sarcosine (6, 98 mg, 1.1
mmol), and the norbornene dipolarophile 7a (213
mg, 1 mmol) in EtOH (3 mL) was heated at 80 ˚C
for 20 h under an inert atmosphere. After completion of the reaction
(TLC monitoring), the flask containing the reaction mixture was
cooled to r.t., and the solvent was evaporated under vacuum. Purification
of the resulting crude reaction mixture by column chromatography on
neutral alumina (EtOAc-hexanes = 60:40)
gave the product 13 (220 mg, 55%).
Spectral Data for Compound 13
Colorless
solid; mp 223-225 ˚C (MeOH-hexanes = 1:1).
IR (KBr): 2948, 2906, 1750, 1717, 1606, 1467, 1437 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 7.56 (d, 1 H, J = 7.6 Hz),
7.34 (t, 1 H, J = 7.6
Hz), 7.11 (t, 1 H, J = 7.6
Hz), 6.85 (d, 1 H, J = 7.6
Hz), 4.88 (s, 1 H), 4.56 (s, 1 H), 3.68 (s, 3 H), 3.60 (s, 3 H),
3.47 (t, 1 H, J = 8.2
Hz), 3.20 (s, 3 H), 3.08 (d, 1 H, J = 9.6
Hz), 3.01-2.98 (m, 1 H), 2.87 (d, 1 H, J = 9.6
Hz), 2.89-2.85 (m, 1 H), 2.65 (d, 1 H, J = 8.2
Hz), 1.96 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3): δ = 178.2, 171.1, 144.0, 129.4, 127.8,
126.1, 122.7, 108.3, 82.1, 80.4, 74.2, 58.4, 55.8, 52.2, 52.1, 51.5,
50.7, 47.5, 35.1, 26.3. MS (CI): m/z (%) = 402 (100) [M + 2]+,
401 (30) [M + 1]+ 195
(8), 175 (7), 111 (30), 79 (15). ESI-HRMS: m/z calcd
for C21H24N2O6Na [M + Na]+:
423.1532; found: 423.1532 [M + Na]+.