Synlett 2012(2): 306-310  
DOI: 10.1055/s-0031-1290139
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Development of a Near Infrared Fluorescence Labeling Reagent: Synthesis of Indole-Functionalized Indocyanine Green Derivatives

Takayuki Doi*a, Koya Oikawaa, Jun Suzukia, Masahito Yoshidaa, Nobuhiko Ikib
a Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
Fax: +81(22)7956864; e-Mail: doi_taka@mail.pharm.tohoku.ac.jp;
b Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan
Further Information

Publication History

Received 9 September 2011
Publication Date:
03 January 2012 (online)

Abstract

We have demonstrated a facile synthesis of functionalized indocyanine green (ICG) derivatives. Heteroatom-substituted indolenine was synthesized via SNAr reaction of 5-chloro-2,4-di­nitroanisole with 1,2-dimethyl-1-propenyl trimethylsilyl ether followed by reduction of the nitro groups. After the introduction of hydrophilic butanesulfonate moieties, homo- and heterocondensations with glutaconaldehyde dianilide provided symmetrical and unsymmetrical ICG derivatives, which exhibit near infrared (NIR) absorption and fluorescence emission similar to those of ICG. NIR fluorescence labeling reagent was synthesized using the amino group in the ICG derivative. The 1,3-dipolar cycloaddition with benzyl azide was performed utilizing copper nanoparticles toward a versatile method for the synthesis of NIR molecular imaging probes.

    References and Notes

  • 1 Caesar J. Shaldon S. Chiandussi L. Guevara L. Sheriock S. Clin. Sci.  1961,  21:  43 
  • 2 Flanagan JH. Khan SH. Menchen S. Soper SA. Hammer RP. Bioconjugate Chem.  1997,  8:  751 
  • 3 Licha K. Riefke B. Ntziachristos V. Becker A. Chance B. Semmler W. Photochem. Photobiol.  2000,  72:  392 
  • 4 Lin Y. Weissleder R. Tung C.-H. Bioconjugate Chem.  2002,  13:  605 
  • 5a Achilefu S. Jimenez HN. Dorshow RB. Bugaj JE. Webb EG. Wilhelm RR. Rajagopalan R. Johler J. Erion JL. J. Med. Chem.  2002,  45:  2003 
  • 5b Zhang Z. Berezin MY. Kao JLF. d’Avignon A. Bai M. Achilefu S. Angew. Chem. Int. Ed.  2008,  47:  3584 
  • 5c Pu Y. Wang WB. Das BB. Achilefu S. Alfano RR. Appl. Opt.  2008,  47:  2281 
  • 5d Almutairi A. Guillaudeu SJ. Berezin MY. Achilefu S. Fréchet JMJ. J. Am. Chem. Soc.  2008,  130:  444 
  • 6 Pharm W. Cassell L. Gillman A. Koktysh D. Gore JC. Chem. Commun.  2008,  16:  1895 
  • 7 Pauli J. Vag T. Haag R. Spieles M. Wenzel M. Kaiser WA. Resch-Genger U. Hilger I. Eur. J. Med. Chem.  2009,  3496 
  • 8 Escobedo JO. Rusin O. Lim S. Strongin RM. Curr. Opin. Chem. Biol.  2010,  14:  64 
  • 9a Samanta A. Vendrell M. Das R. Chang Y.-T. Chem. Commun.  2010,  46:  7406 
  • 9b Samanta A. Vendrell M. Yun S.-W. Guan Z. Xu Q.-H. Chang Y.-T. Chem. Asian J.  2011,  6:  1353 
  • 9c Samanta A. Maiti KK. Soh K.-S. Liao X. Vendrell M. Dinishi US. Yun S.-W. Bhuvaneswari R. Kim H. Rautela S. Chung J. Olivo M. Chang Y.-T. Angew. Chem. Int. Ed.  2011,  50:  6089 
  • 10a Kosaka N. Mitsunaga M. Longmire MR. Choyke PL. Kobayashi H. Int. J. Cancer  2011,  129:  1671 
  • 10b Baker KJ. Proc. Soc. Exp. Biol. Med.  1966,  122:  957 
  • 11a Ernst LA. Gupta RK. Mujumdar RB. Waggoner AS. Cytometry  1989,  10:  3 
  • 11b Mujumdar RB. Ernst LA. Mujumdar SR. Waggoner AS. Cytometry  1989,  10:  11 
  • 11c Southwick PL. Ernst LA. Tauriello EW. Parker SR. Mujumdar RB. Mujumdar SR. Clever HA. Waggoner AS. Cytometry  1990,  11:  418 
  • 11d Mujumdar RB. Ernst LA. Mujumdar SR. Lewis CJ. Waggoner AS. Bioconjugate Chem.  1993,  4:  105 
  • For reviews:
  • 12a Robinson B. Chem. Rev.  1963,  63:  373 
  • 12b Robinson B. Chem. Rev.  1969,  69:  227 
  • 12c Hughes DL. Org. Prep. Proced. Int.  1993,  25:  607 
  • 13 Borsche W. Ber. Dtsch. Chem. Ges.  1917,  50:  1339 
  • 14 Boyer JH. Buriks RS. Org. Synth., Collect. Vol. V  1973,  1067 
  • 15 Blanco L. Amice P. Conia JM. Synthesis  1976,  194 
  • 16a RajanBabu TV. Fukunaga T. J. Org. Chem.  1984,  49:  4571 
  • 16b RajanBabu TV. Reddy GS. Fukunaga T.
    J. Am. Chem. Soc.  1985,  107:  5473 
  • 16c RajanBabu TV. Chenard BL. Petti MA. J. Org. Chem.  1986,  51:  1704 
  • 18 Meisenheimer J. Liebigs Ann. Chem.  1902,  323:  205 
  • 19 Saeki S. Hayashi T. Hamana M. Heterocycles  1984,  22:  545 
  • 22 Demas JN. Crosby GA. J. Phys. Chem.  1971,  75:  991 
  • 23 Benson RC. Kues HA. J. Chem. Eng. Data  1977,  22:  379 
  • 24 Tornøe CW. Chirstensen C. Meldal M. J. Org. Chem.  2002,  67:  3057 
  • 25 Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  2596 
  • 26 Kunishima M. Kawachi C. Hioki K. Terao K. Tani S. Tetrahedron  2001,  57:  1551 
  • 27 Doi T. Numajiri Y. Takahashi T. Takagi M. Shin-ya K. Chem. Asian J.  2011,  6:  180 
  • 28 Park IS. Kwon MS. Kim Y. Lee JS. Park J. Org. Lett.  2008,  10:  497 
  • It has been demonstrated that fluorescence of a low quantum yield molecular fluorophore, such as ICG, is strongly enhanced by the plasmon resonance energy utilizing metalic nanoshells, see:
  • 29a Tam F. Goodrich GP. Johnson BR. Halas NJ. Nano Lett.  2007,  7:  496 
  • 29b Bardhan R. Grady NK. Halas NJ. Small  2008,  4:  1716 
17

RajanBabu et al. reported α-nitroarylation by aromatic nucleophilic substitution with silyl enol ethers was performed using TASF in THF-MeCN at rather lower temperatures such as -60 ˚C. See ref. 16.

20

Synthesis of 5-amino-1-δ-sulfobutyl-2,3,3-trimethyl-(3H)-indolenine and its cyanine derivatives was reported in ref. 11b.

21

Compound 3c was prepared from 1,1,2-trimethyl-(1H)-benz[e]indole and 1,4-butane sultone according to standard methods.