Synlett 2012(1): 128-130  
DOI: 10.1055/s-0031-1290082
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Total Synthesis of Danshenspiroketallactone

Daniel F. Chorley, Jack Li-Yang Chen, Daniel P. Furkert, Jonathan Sperry, Margaret A. Brimble*
School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
e-Mail: m.brimble@auckland.ac.nz;
Further Information

Publication History

Received 3 October 2011
Publication Date:
28 November 2011 (eFirst)

Abstract

Described herein is the first synthesis of the monobenz­annulated 5,5-spiroketals danshenspiroketallactone and epi-danshen­spiroketallactone, two components of the traditional Chinese medicine Danshen. Key features of the synthesis include a directed metallation-lactonisation sequence to install the isobenzofuranone moiety and an oxidative radical cyclisation to afford the monobenz­annulated 5,5-spiroketal.

    References and Notes

  • 1a Rama Raju B. Saikia AK. Molecules  2008,  13:  1942 
  • 1b Brewer BN. Mead TK. Curr. Org. Chem.  2003,  7:  227 
  • 1c Brimble MA. Furkert DP. Curr. Org. Chem.  2003,  7:  1461 
  • 1d Jacobs MF. Kitching W. Curr. Org. Chem.  1998,  2:  395 
  • 2 Sperry J. Wilson ZE. Rathwell DCK. Brimble MA. Nat. Prod. Rep.  2010,  27:  1117 
  • 3a Kong D. Liu X. Teng M. Rao Z. Acta Pharm. Sin.  1985,  20:  747 
  • 3b Zhou L. Zuo Z. Chow MS. J. Clin. Pharmacol.  2005,  45:  1345 
  • 4 Luo HW. Chen SX. Lee JN. Snyder JK. Phytochemistry  1988,  27:  290 
  • 5 Asari F. Kusumi T. Zheng GZ. Cen YZ. Kakisawa H. Chem. Lett.  1990,  1885 
  • 6 Al Yousuf MH. Bashir AK. Blunden G. Crabb TA. Patel AV. Phytochemistry  2002,  61:  361 
  • 7a Rathwell DCK. Yang S.-H. Tsang KY. Brimble MA. Angew. Chem. Int. Ed.  2009,  48:  7996 
  • 7b Wilson ZE. Brimble MA. Org. Biomol. Chem.  2010,  8:  1284 
  • 7c Yuen T.-Y. Yang S.-H. Brimble MA. Angew. Chem. Int. Ed.  2011,  50:  8350 
  • 7d McLeod MC. Wilson ZE. Brimble MA. Org. Lett.  2011,  13:  5382 
  • 8 The total synthesis of cryptoacetalide involves a similar oxidative cyclisation to that reported herein: Zou Y. Dieters A. J. Org. Chem.  2010,  75:  5355 
  • 9 For a review on the use of the oxidative radical cyclisation approach to spiroketal natural products, see: Sperry J. Liu Y.-C. Brimble MA. Org. Biomol. Chem.  2010,  8:  29 
  • 10a Liu Y.-C. Sperry J. Rathwell DCK. Brimble MA. Synlett  2009,  793 
  • 10b Sperry J. Liu Y.-C. Wilson ZE. Hubert JG. Brimble MA. Synthesis  2011,  8:  1383 
  • 11 Hansen DB. Starr M.-L. Tolstoy N. Joullié MM. Tetrahedron: Asymmetry  2005,  16:  3623 
  • 12 Short WF. Wang H. J. Chem. Soc.  1950,  991 
  • 13 Nakamura S. Kikuchi F. Hashimoto S. Tetrahedron: Asymmetry  2008,  18:  1059 
  • 16 Kirby JA. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen   Springer; New York: 1983. 
14

The full results of the extensive optimisation study conducted to ensure the satisfactory reaction between 9 and 10 will be reported in due course.

15

At the conclusion of the previously reported total synthesis of a member of this family of natural products, crypto-acetalides 3 and 5 were obtained as an inseparable 2:1 mixture of spiroketal epimers, respectively (ref. 8).

17

Synthesis of Danshenspiroketallactone (1) and epi -Danshenspiroketallactone (2) A mixture of alcohol 7 (50 mg, 0.19 mmol), PhI(OAc)2 (119 mg, 0.37 mmol), and iodine (108 mg, 0.43 mmol) in anhyd cyclohexane (15.3 mL) was degassed with nitrogen at r.t. for 15 min. The resulting solution was cooled in an ice-water bath (10 ˚C) and irradiated with a desk lamp (60 W) for 3.5 h. The solution was poured onto a mixture of sat. aq Na2S2O3 (20 mL) and sat. aq NaHCO3 (20 mL) and diluted with Et2O (100 mL). The organic layer was separated and the aqueous layer further extracted with Et2O (2 × 100 mL). The organic fractions were combined and dried over anhyd MgSO4, filtered, and the solvent was removed under reduced pressure. The crude product was purified by flash chroma-tography on silca gel using hexanes-EtOAc (3:1, R f = 0.52) as eluent to afford the title compounds 1 and 2 (23.3 mg, 0.09 mmol, 47%; Figure  [²] ) as an orange solid and an inseparable mixture of diastereomers (1.5:1). IR (neat): νmax = 2957, 2928, 2876, 1925, 1749, 1601, 1588, 1526, 1470, 1454, 1375, 1342, 1322, 1254, 1211, 1183, 1159, 1136, 1110, 1083, 1070, 1047, 1003, 981, 950, 928, 915, 882, 847, 811, 777, 769, 737, 700, 684, 658, 646, 628 cm. ¹H NMR (400 MHz, CDCl3): δ = 1.26 (1.5 H, d, J = 7.0 Hz, H-17), 1.32 (1.5 H, d, J = 7.0 Hz, H-17*), 2.11 (0.5 H, dd, J = 10.5, 13.0 Hz, H-16a), 2.22 (0.5 H, dd, J = 4.7, 13.2 Hz, H-16b*), 2.53 (0.5 H, dd, J = 7.0, 13.0 Hz, H-16b), 2.70 (0.5 H, dd, J = 9.5, 13.4 Hz, H-16a*), 2.74 (3 H, s, H-18, H-18*), 2.76 (0.5 H, m, H-15*), 2.95 (0.5 H, m, H-15), 3.82 (0.5 H, t, J = 8.2 Hz, H-14a), 3.93 (0.5 H, dd, J = 7.2, 8.2 Hz, H-14b*), 4.42 (0.5 H, t, J = 7.8 Hz, H-14a*), 4.47 (0.5 H, t, J = 8.2 Hz, H-14b), 7.46 (1 H, dd, J = 1.0, 7.0 Hz, H-3, H-3*), 7.53 (0.5 H, d, J = 8.8 Hz, H-7*), 7.57 (0.5 H, d, J = 8.4 Hz, H-7), 7.60 (1 H, dd, J = 7.0, 8.5 Hz, H-2, H-2*), 8.34 (1 H, m, H-6, H-6*), 8.87 (1 H, d, J = 8.4 Hz, H-1, H-1*). ¹³C NMR (100 MHz, CDCl3): δ = 17.4 (CH3, C-17), 18.2 (CH3, C-17*), 19.9 (2 × CH3, C-18, C-18*), 32.6 (CH, C-15), 33.5 (CH, C-15*), 44.6 (CH2, C-16*), 45.4 (CH2, C-16), 77.37, 77.39 (2 × CH2, C-14, C-14*), 113.2 (2 × C, C-13, C-13*), 118.1 (ArH, C-7*), 118.2 (ArH, C-7), 121.7 (C, C-9*), 122.1 (ArH, C-1), 122.17 (ArH, C-1*), 122.21 (C, C-9), 128.5 (2 × ArH, C-3, C-3*), 129.0 (2 × ArH, C-2, C-2*), 129.2 (ArH, C-10*), 129.3 (ArH, C-10), 131.9 (ArH, C-6), 132.0 (ArH, C-6*), 133.4 (C, C-5*), 133.5 (C, C-5), 135.1 (2 × C, C-4, C-4*), 147.1 (C, C-8), 147.8 (C, C-8*), 168.4 (2 × C=O, C-11, C-11*). MS (ESI+): m/z (%) = 291 (100) [M + Na]+, 259 (29), 214 (18), 165 (22), 89 (27). HRMS: m/z calcd for C17H16O3Na: 291.0992; found: 291.0991 [M + Na]+. The spectroscopic data are in full agreement with that reported in the literature.³,4

Figure 2