Abstract
A convenient Pd(II)-catalyzed direct olefination of unactivated
arenes with allylic esters and ethers via C-H activation
was demonstrated. Under the typical conditions, various aryl-substituted allylic
esters and ethers can be prepared.
Key words
palladium catalysis - olefination - C-C
bond formation - C-H bond activation - allylic
ester
References and Notes
For representative reviews, see:
<A NAME="RW20611ST-1A">1a </A>
Arndtsen BA.
Bergman RG.
Mobley TA.
Peterson TH.
Acc.
Chem. Res.
1995,
28:
154
<A NAME="RW20611ST-1B">1b </A>
Dyker G.
Angew.
Chem. Int. Ed.
1999,
38:
1698
<A NAME="RW20611ST-1C">1c </A>
Jia C.-G.
Kitamura T.
Fujiwara Y.
Acc.
Chem. Res.
2001,
34:
633
<A NAME="RW20611ST-1D">1d </A>
Ritleng V.
Sirlin C.
Pfeffer M.
Chem.
Rev.
2002,
102:
1731
<A NAME="RW20611ST-1E">1e </A>
Kakiuchi F.
Chatani N.
Adv. Synth. Catal.
2003,
345:
1077
<A NAME="RW20611ST-1F">1f </A>
Godula K.
Sames D.
Science
2006,
312:
67
<A NAME="RW20611ST-1G">1g </A>
Bergman RG.
Nature (London)
2007,
446:
391
<A NAME="RW20611ST-1H">1h </A>
Alberico D.
Scott ME.
Lautens M.
Chem.
Rev.
2007,
107:
174
<A NAME="RW20611ST-1I">1i </A>
Ackermann L.
Vicente R.
Kapdi AR.
Angew.
Chem. Int. Ed.
2009,
48:
9792
<A NAME="RW20611ST-1J">1j </A>
Chen X.
Engle KM.
Wang D.-H.
Yu J.-Q.
Angew. Chem. Int. Ed.
2009,
48:
5094
<A NAME="RW20611ST-1K">1k </A>
Thansandote P.
Lautens M.
Chem. Eur. J.
2009,
15:
5874
<A NAME="RW20611ST-1L">1l </A>
Li C.-J.
Acc. Chem.
Res.
2009,
42:
335
<A NAME="RW20611ST-1M">1m </A>
Daugulis O.
Do H.-Q.
Shabashov D.
Acc.
Chem. Res.
2009,
42:
1074
<A NAME="RW20611ST-1N">1n </A>
Dobereiner GE.
Crabtree RH.
Chem.
Rev.
2010,
110:
681
<A NAME="RW20611ST-1O">1o </A>
Lyons TW.
Sanford MS.
Chem.
Rev.
2010,
110:
1147
<A NAME="RW20611ST-1P">1p </A>
Zhang S.-Y.
Zhang F.-M.
Tu Y.-Q.
Chem.
Soc. Rev.
2011,
40:
1937
<A NAME="RW20611ST-1Q">1q </A>
Sun C.-L.
Li B.-J.
Shi Z.-J.
Chem.
Rev.
2011,
111:
1293
<A NAME="RW20611ST-1R">1r </A>
Li B.-J.
Yang S.-D.
Shi Z.-J.
Synlett
2008,
949
<A NAME="RW20611ST-1S">1s </A>
Sun C.-L.
Li B.-J.
Shi Z.-J.
Chem.
Commun.
2010,
46:
677
<A NAME="RW20611ST-2">2 </A> For a very recent excellent review,
see:
Bras JL.
Muzart J.
Chem.
Rev.
2011,
111:
1170
<A NAME="RW20611ST-3A">3a </A>
Moritani I.
Fujiwara Y.
Tetrahedron
Lett.
1967,
8:
1119
<A NAME="RW20611ST-3B">3b </A>
Fujiwara Y.
Moritani I.
Danno S.
Asano R.
Teranishi S.
J.
Am. Chem. Soc.
1969,
91:
7166
<A NAME="RW20611ST-3C">3c </A>
Jia C.
Piao D.
Oyamada J.
Lu W.
Kitamura T.
Fujiwara Y.
Science
2000,
287:
1992
<A NAME="RW20611ST-4A">4a </A>
Yokota T.
Tani M.
Sakaguchi S.
Ishii Y.
J. Am. Chem.
Soc.
2003,
125:
1476
<A NAME="RW20611ST-4B">4b </A>
Dams M.
De Vos DE.
Celen S.
Jacobs PA.
Angew. Chem. Int.
Ed.
2003,
42:
3512
<A NAME="RW20611ST-5A">5a </A>
Zhang Y.-H.
Shi B.-F.
Yu J.-Q.
J. Am. Chem. Soc.
2009,
131:
5072
<A NAME="RW20611ST-5B">5b </A>
Ye M.-C.
Gao G.-L.
Yu J.-Q.
J.
Am. Chem. Soc.
2011,
133:
6964
<A NAME="RW20611ST-6">6 </A>
Zhang X.
Fan S.
He C.-Y.
Wan X.
Min Q.-Q.
Yang J.
Jiang Z.-X.
J. Am. Chem. Soc.
2010,
132:
4506
<A NAME="RW20611ST-7A">7a </A>
Miura M.
Tsuda T.
Satoh T.
Pivsa-Art S.
Nomura M.
J. Org. Chem.
1998,
63:
5211
<A NAME="RW20611ST-7B">7b </A>
Boele MDK.
van Strijdonck GTPF.
de Vries AHM.
Kamer PCJ.
de Vries JG.
van Leeuwen PWNM.
J. Am. Chem. Soc.
2002,
124:
1586
<A NAME="RW20611ST-7C">7c </A>
Zaitsev VG.
Daugulis O.
J. Am. Chem.
Soc.
2005,
127:
4156
<A NAME="RW20611ST-7D">7d </A>
Wang J.-R.
Yang C.-T.
Liu L.
Guo Q.-X.
Tetrahedron Lett.
2007,
48:
5449
<A NAME="RW20611ST-7E">7e </A>
Cai G.
Fu Y.
Li Y.
Wan X.
Shi Z.
J. Am. Chem.
Soc.
2007,
129:
7666
<A NAME="RW20611ST-7F">7f </A>
Li J.-J.
Mei T.-S.
Yu J.-Q.
Angew. Chem.
Int. Ed.
2008,
47:
6452
<A NAME="RW20611ST-7G">7g </A>
Houlden CE.
Bailey CD.
Ford JG.
Gagné MR.
Lloyd-Jones GC.
Booker-Milburn KI.
J. Am. Chem. Soc.
2008,
130:
10066
<A NAME="RW20611ST-7H">7h </A>
Wang D.-H.
Engle KM.
Shi B.-F.
Yu J.-Q.
Science
2010,
327:
315
<A NAME="RW20611ST-7I">7i </A>
Park SH.
Kim JY.
Chang S.
Org. Lett.
2011,
13:
2372
<A NAME="RW20611ST-8">8 </A>
Cho SH.
Hwang SJ.
Chang S.
J.
Am. Chem. Soc.
2008,
130:
9254
<A NAME="RW20611ST-9">9 </A>
Pan D.
Jiao N.
Synlett
2010,
1577
<A NAME="RW20611ST-10A">10a </A>
Pan D.
Chen A.
Su Y.
Zhou W.
Li S.
Jia W.
Xiao J.
Liu Q.
Zhang L.
Jiao N.
Angew.
Chem. Int. Ed.
2008,
47:
4729
<A NAME="RW20611ST-10B">10b </A>
Su YJ.
Jiao N.
Org. Lett.
2009,
11:
2980
<A NAME="RW20611ST-10C">10c </A>
Pan D.
Yu M.
Chen W.
Jiao N.
Chem. Asian J.
2010,
5:
1090
<A NAME="RW20611ST-11">11 </A>
The cinnamyl acetate was also generated
in the absence of toluene when PdCl2 (Ph3 P)2 was
used as catalyst.
<A NAME="RW20611ST-12">12 </A>
Typical Procedure
A
mixture of mesitylene (1.9 mL, as solvent), allyl acetate (0.6 mmol,
60 mg), Pd(OAc)2 (0.06 mmol), AgOAc (1.2 mmol), and DMSO
(0.1 mL) was added to a round-bottom flask. After stirring for 12
h at 110 ˚C, the solvent was removed under reduced
pressure, and the residue was purified by flash chromatography on
silica gel (eluent: PE-EtOAc = 20:1) to afford
(E )-3-mesitylallyl acetate (73 mg, 56%)
as a colorless oil. ¹ H NMR (400 MHz, CDCl3 ): δ = 6.88
(s, 2 H), 6.64 (d, J = 16.0
Hz, 1 H), 5.84-5.76 (m, J = 16.0,
6.4 Hz, 1 H), 4.76 (dd, J = 6.4,
1.2 Hz, 2 H), 2.28 (s, 9 H), 2.12 (s, 3 H). ¹³ C
NMR (100 MHz, CDCl3 ): δ = 170.8, 136.4,
135.8, 132.9, 131.9, 128.6, 128.5, 65.4, 21.0, 20.9, 20.8, 20.7.
HRMS: m/z calcd for C14 H18 NaO2 : 241.1199;
found: 241.1197.
<A NAME="RW20611ST-13A">13a </A>
Bernocchi E.
Cacchi S.
Ciattini PG.
Morera E.
Ortar G.
Tetrahedron Lett.
1992,
33:
3073
<A NAME="RW20611ST-13B">13b </A>
Kang
S.-K.
Lee H.-W.
Jang S.-B.
Kim T.-H.
Pyun S.-J.
J.
Org. Chem.
1996,
61:
2604