Subscribe to RSS
DOI: 10.1055/s-0031-1289877
A Highly Diastereoselective Access to Silicon-Containing Oxazines via the TMSOTf-Promoted Reactions of N-Benzoyl-N,O-acetals with Allyl Silanes
Publication History
Publication Date:
11 November 2011 (online)

Abstract
A TMSOTf-promoted cycloaddition of N-benzoyl-N,O-acetals with allyl silanes to synthesize silicon-containing oxazines with high diastereoselectivities has been developed. The obtained products might be useful as building blocks in organic synthesis.
Key words
N-benzoyl-N,O-acetals - oxazine - cycloaddition - diastereoselectivity
- Supporting Information for this article is available online:
               
               
- Supporting Information (PDF)
- For reviews concerning C-C bond formation using imines as material, see:
- 1a 
             
            Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207Reference Ris Wihthout Link
- 1b 
             
            Enders D.Reinhold U. Tetrahedron: Asymmetry 1997, 8: 1895Reference Ris Wihthout Link
- 1c 
             
            Bloch R. Chem. Rev. 1998, 98: 1407Reference Ris Wihthout Link
- 1d 
             
            Kobayashi S.Ishitani H. Chem. Rev. 1999, 99: 1069Reference Ris Wihthout Link
- 1e 
             
            Liu M.Sibi MP. Tetrahedron 2002, 58: 7991Reference Ris Wihthout Link
- 1f 
             
            Friestad GF.Mathies AK. Tetrahedron 2007, 63: 2541Reference Ris Wihthout Link
- 1g 
             
            Nugent TC.El-Shazly M. Adv. Synth. Catal. 2010, 352: 753Reference Ris Wihthout Link
- For reference on Povarov reaction, see:
- 2a 
             
            Povarov L. Russ Chem. Rev. 1967, 36: 656Reference Ris Wihthout Link
- 2b 
             
            Bello D.Ramon R.Lavilla R. Curr. Org. Chem. 2010, 14: 332Reference Ris Wihthout Link
- 2c 
             
            Glushkov VA.Tolstikov AG. Russ. Chem. Rev. 2008, 77: 137Reference Ris Wihthout Link
- 2d 
             
            Wang S.Zhao YL.Zhang W.Liu Q. J. Org. Chem. 2007, 72: 4985Reference Ris Wihthout Link
- 2e 
             
            Akiyama T.Morita H.Fuchibe K.
 J. Am. Chem. Soc. 2006, 128: 13070Reference Ris Wihthout Link
- 2f 
             
            Twin H.Batey RA. Org. Lett. 2004, 6: 4913Reference Ris Wihthout Link
- 3a 
             
            Yadav JS.Reddy BVS.Madhuri C.Sabitha G.Jagannadh B.Kumar SK.Kunwar AC. Tetrahedron Lett. 2001, 42: 6381Reference Ris Wihthout Link
- 3b 
             
            Anniyappan M.Muralidharan D.Perumal Paramasivan T. Tetrahedron 2002, 58: 10301Reference Ris Wihthout Link
- 3c 
             
            Wang J.Xu F.-X.Lin X.-F.Wang Y.-G. Tetrahedron Lett. 2008, 49: 5208Reference Ris Wihthout Link
- 3d 
             
            Rueping M.Lin M.-Y. Chem. Eur. J. 2010, 16: 4169Reference Ris Wihthout Link
- 4 
             
            Jiménez O.de la Rosa G.Lavilla R. Angew. Chem. Int. Ed. 2005, 44: 6521Reference Ris Wihthout Link
- 5 
             
            Ghosh AK.Xu C.-X.Kulkarni SS.Wink D. Org. Lett. 2005, 7: 7Reference Ris Wihthout Link
- 6a 
             
            Li G.Kaplan MJ.Wojtas L.Antilla JC. Org. Lett. 2010, 12: 1960Reference Ris Wihthout Link
- 6b 
             
            Cakir SP.Mead KT. Synthesis 2008, 871Reference Ris Wihthout Link
- 7a 
             
            Momiyama N.Nishimoto H.Terada M. Org. Lett. 2011, 13: 2126Reference Ris Wihthout Link
- 7b 
             
            Friestad GK.Korapala CS.Ding H. J. Org. Chem. 2006, 71: 281Reference Ris Wihthout Link
- 7c 
             
            Kiyohara H.Nakamura Y.Matsubara R.Kobayashi S. Angew. Chem. Int. Ed. 2006, 45: 1615Reference Ris Wihthout Link
- 7d 
             
            Ollevier T.Ba T. Tetrahedron Lett. 2003, 45: 9003Reference Ris Wihthout Link
- 7e 
             
            Brown RCD.Fisher ML.Brown LJ. Org. Biomol. Chem. 2003, 1: 2699Reference Ris Wihthout Link
- 7f 
             
            Friestad GK.Ding H. Angew. Chem. Int. Ed. 2001, 40: 4491Reference Ris Wihthout Link
- 7g 
             
            Uyehara T.Yuuki M.Masaki H.Matsumoto M.Ueno M.Sato T. Chem. Lett. 1995, 24: 789Reference Ris Wihthout Link
- 8a 
             
            Bates RW.Lu Y.Cai MP. Tetrahedron 2009, 65: 7852Reference Ris Wihthout Link
- 8b 
             
            Terada M.Machioka K.Sorimachi K. Angew. Chem. Int. Ed. 2009, 48: 2553Reference Ris Wihthout Link
- 8c 
             
            Liu R.-C.Huang W.Ma JY.Wei B.-G.Lin G.-Q. Tetrahedron Lett. 2009, 50: 4046Reference Ris Wihthout Link
- 8d 
             
            Myers EL.Vries JG.Aggarwal VK. Angew. Chem. Int. Ed. 2007, 46: 1893Reference Ris Wihthout Link
- 8e 
             
            Gizecki P.Ait Youcef R.Poulard C.Dhal R.Dujardin G. Tetrahedron Lett. 2004, 45: 9589Reference Ris Wihthout Link
- 8f 
             
            Gizecki P.Dhal R.Poulard C.Gosselin P.Dujardin G. J. Org. Chem. 2003, 68: 4338Reference Ris Wihthout Link
- 8g 
             
            Chao W.Weinreb SM. Tetrahedron Lett. 2000, 41: 9199Reference Ris Wihthout Link
- Recent examples concerning the synthetic application of oxazines, see:
- 9a 
             
            Mulzer M.Coates GW. Org. Lett. 2011, 13: 1426Reference Ris Wihthout Link
- 9b 
             
            Lee YM.Baek DJ.Lee S.Kim D.Kim S. J. Org. Chem. 2011, 76: 408Reference Ris Wihthout Link
- 9c 
             
            Liu Z.Byun H.-S.Bittman R. Org. Lett. 2010, 12: 2974Reference Ris Wihthout Link
- 9d 
             
            Pham V.-T.Joo J.-E.Lee K.-Y.Kim T.-W.Mu Y.Ham W.-H. Tetrahedron 2010, 66: 2123Reference Ris Wihthout Link
- 10 Compared to their carbon analogues,
            organosilicon compounds exhibit enhanced lipophilicity, stronger
            OH affinity, and more electropositive character:  
            Bains W.Tacke R. Curr. Opin. Drug Discovery Dev. 2003, 6: 526Reference Ris Wihthout Link
- 11 For details on the stereochemistry
            assignment of 4,6-disubstituted 1,3-oxzines, see:  
            Katritzky AR.Ghiviriga I.Chen K.Tymoshenko DO.Abdel-Fattah AAA.
 J. Chem. Soc., Perkin Trans. 2 2001, 530Reference Ris Wihthout Link
Reference and Notes
         Typical Procedure
            for the Preparation of Oxazines (13b)
         
To a mixture
         of 11a (1 mmol), tert-butyl
         trimethyl allyl silane (1 mmol) and CH2Cl2 (10
         mL) was added TMSOTf (0.16 mL, 1 mmol) dropwise at -78 ˚C.
         After stirring at the same temperature for 1 h, the reaction was
         quenched by the addition of sat. NaHCO3 solution (10
         mL). The resulting mixture was extracted with CH2Cl2 (3 × 10
         mL). The combined organic extracts were washed with brine, dried over
         Na2SO4. Removal of the solvent provided the
         residue which was purified by flash chromatography to afford trans-13b (244
         mg, 67%) and cis-13b (40.7
         mg, 11%) as colorless oils.
         trans-13b: ¹H NMR (400 MHZ,
         CDCl3): δ = 7.94 (d, J = 8.0 Hz,
         2 H), 7.34-7.13 (m, 8 H), 4.63 (dd, J = 11.6,
         4.8 Hz, 1 H), 4.47-4.40 (m, 1 H), 2.23-2.18 (m,
         1 H), 1.47 (dd, J = 24.4,
         11.6 Hz, 1 H), 1.05 (dd, J = 14.8,
         8.0 Hz, 1 H), 0.87 (dd, J = 14.8,
         6.0 Hz, 1 H), 0.81 (s, 9 H), 0.05 (s, 3 H), 0.00 (s, 3 H). ¹³C
         NMR (100 MHz, CDCl3): δ = 156.4,
         144.7, 134.2, 130.4, 128.4, 128.0, 127.4, 126.7, 126.4, 74.2, 57.1, 40.6,
         26.4, 20.3, 16.5, -4.8, -5.3. ESI-MS: m/z = 366 [M + 1].
         Anal. Calcd for C23H31NOSi: C, 75.56; H, 8.55;
         N, 3.83. Found: C, 75.47; H, 8.37, N, 3.95.
cis-13b: ¹H
         NMR (400 MHz, CDCl3): δ = 8.02
         (d, J = 8.0 Hz,
         2 H), 7.41-7.20 (m, 8 H), 4.88 (t, J = 4.8
         Hz, 1 H), 4.29-4.23 (m, 1 H), 2.06-1.95 (m, 2
         H), 1.17 (dd, J = 14.4,
         8.0 Hz, 1 H), 0.89 (dd, J = 14.8,
         6.8 Hz, 1 H), 0.82 (s, 9 H), 0.00 (s, 3 H), -0.05 (s, 3
         H). ¹³C NMR (100 MHz, CDCl3): δ = 156.5, 144.5,
         134.2, 130.4, 128.3, 128.0, 127.3, 126.8, 126.6, 70.2, 54.3, 37.6,
         26.3, 19.8, 16.5, -5.1, -5.3. HRMS: m/z calcd for C23H32NOSi [M + H]+:
         366.2253; found: 366.2263.
 
    