RSS-Feed abonnieren
DOI: 10.1055/s-0031-1289859
Ammonium Phosphorodithioate: A Mild, Easily Handled, Efficient, and Air-Stable Reagent for the Conversion of Amides into Thioamides
Publikationsverlauf
Publikationsdatum:
09. November 2011 (online)

Abstract
A simple, efficient, and new method has been developed for the synthesis of thioamides from amides. As described below, the reaction of a variety of aromatic and aliphatic amides in the presence of ammonium phosphorodithioate as an efficient reagent proceeded effectively to afford the corresponding thioamides in high yields. This method is easy, rapid, and high-yielding for the synthesis of thioamides from amides using an easily handled reagent.
Key words
thioamides - amides - phosphorodithioates - thionation
- 1a
Oare DA.Sanner MA.Heathcock CH. J. Org. Chem. 1990, 55: 132Reference Ris Wihthout Link - 1b
Heathcock CH.Davidson SK.Mills SG.Sanner MA. J. Org. Chem. 1992, 57: 2531Reference Ris Wihthout Link - 1c
Magnus P.Mendoza JS.Stamford A.Ladlow M.Willis P. J. Am. Chem. Chem. Soc. 1992, 114: 10232Reference Ris Wihthout Link - 1d
Kim G.Chu-Moyer MY.Danshefsky SJ.Schulte GK. J. Am. Chem. Soc. 1993, 115: 30Reference Ris Wihthout Link - 1e
Takahata H.Banba Y.Mozumi M.Yamazaki T. Heterocycles 1986, 24: 947Reference Ris Wihthout Link - 1f
Takahata H.Yamazaki T. Heterocycles 1988, 27: 1953Reference Ris Wihthout Link - 1g
Hurd RN.Delmater GT. Chem. Rev. 1961, 61: 45Reference Ris Wihthout Link - 1h
Roth HJ.Kleemann A. Drug Synthesis, In Pharmaceutical Chemistry Vol. 1: Wiley; New York: 1988.Reference Ris Wihthout Link - 1i
Hoeg-Jensen T. Phosphorus, Sulfur Silicon Relat. Elem. 1996, 108: 1Reference Ris Wihthout Link - 2
Sherman DB.Spatola AF.Wire WS.Burks TF.Nguyen TM.-D.Schiller PW. Biochem. Biophys. Res. Commun. 1982, 162: 1126Reference Ris Wihthout Link - 3
Albert A.Knecht H.Andersen E.Hungerford V.Schreier MH.Papageorgiou C. Bioorg. Med. Chem. 1988, 8: 2203Reference Ris Wihthout Link - 4
Jeschke P.Harder A.Etzel W.dau W.Thielking G.Bonse G.Linuma K. Pest Manag. Sci. 2001, 57: 1000Reference Ris Wihthout Link - 5
Cynamon MH.Gimi R.Gyenes F.Sharpe CA.Bergmann KE.Han HJ.Gregor LB.Rapolu R.Luciano G.Welch T. J. Med. Chem. 1995, 38: 3902Reference Ris Wihthout Link - 6
Renau TE.Ludwig MS.Drach JC.Townsend LB. Bioorg. Med. Chem. Lett. 1992, 2: 1755Reference Ris Wihthout Link - 7
Mehanna AS.Belani JD.Kelley CJ.Pallansc LA. Med. Chem. 2007, 3: 513Reference Ris Wihthout Link - 8
Suzyki Y.Yazaki R.Kumagai N.Shibasaki M. Angew. Chem. Int. Ed. 2009, 48: 5026Reference Ris Wihthout Link - 9a
Kindler K. Justus Liebigs Ann. Chem. 1923, 431: 187Reference Ris Wihthout Link - 9b
Zbruyev OI.Stiasni N.Kapper CO. J. Comb. Chem. 2003, 5: 145Reference Ris Wihthout Link - 9c
Wang C.-H.Hwang F.-Y.Horng J.-M.Chen C.-T. Heterocycles 1979, 12: 1191Reference Ris Wihthout Link - 9d
Albert A. Ber. Dtsch. Chem. Ges. 1915, 48: 470Reference Ris Wihthout Link - 9e
Taylor EC.Zoltewicz JA. J. Am. Chem. Soc. 1960, 82: 2656Reference Ris Wihthout Link - 9f
Liboska R.Zyka D.Bobek M. Synthesis 2002, 1649Reference Ris Wihthout Link - 9g
Benner SA. Tetrahedron Lett. 1981, 22: 1851Reference Ris Wihthout Link - 9h
Benner SA. Tetrahedron Lett. 1981, 22: 1855Reference Ris Wihthout Link - 9i
Shiao MJ.Lai LL.Ku WS.Lin PY.Hwu JR. J. Org. Chem. 1993, 58: 4772Reference Ris Wihthout Link - 9j
Brillon D. Synth. Commun. 1992, 22: 1397Reference Ris Wihthout Link - 10
Okamoto K.Yamamoto T.Kanbara T. Synlett 2007, 2687Reference Ris Wihthout Link - For selected articles, see:
- 11a
Ozturk T.Ertas E.Mert O. Chem. Rev. 2007, 107: 5210Reference Ris Wihthout Link - 11b
Varma RS.Kumar D. Org. Lett. 1999, 1: 697Reference Ris Wihthout Link - 11c
Curphey TJ. J. Org. Chem. 2002, 67: 6461Reference Ris Wihthout Link - 12
Charette AB.Gernon M. J. Org. Chem. 2003, 68: 5792Reference Ris Wihthout Link - 13
Pathak U.Pandey LK.Tank R. J. Org. Chem. 2008, 78: 2890Reference Ris Wihthout Link - 14
Borthakur N.Goswami A. Tetrahedron Lett. 1995, 36: 6745Reference Ris Wihthout Link - 15
Cho D.Ahn J.De Castro KA.Ahn H.Rhee H. Tetrahedron 2010, 66: 5583Reference Ris Wihthout Link - 16a
Kaboudin B.Norouzi H. Synthesis 2004, 2035Reference Ris Wihthout Link - 16b
Kaboudin B.Elhamifar D. Synthesis 2006, 224Reference Ris Wihthout Link - 16c
Kaboudin B.Elhamifar D.Farjadian F. Org. Prep. Proced. Int. 2006, 38: 412Reference Ris Wihthout Link - 18
Habibi M.Habibi MH.Tangestaninejad S.Fallah-Shojaie A.Mohammadpoor-Baltork I.Tayyari SF.Emtiazi G.Hamidimotlagh R. J. Coord. Chem. 2005, 58: 955Reference Ris Wihthout Link - 19
Alliger G.Smith GEP.Carr EL.Stevens HP.
J. Org. Chem. 1949, 14: 962Reference Ris Wihthout Link - 20
Rauf MK.Bolte M.Badshah A. Acta Crystallogr., Sect. E: Struct. Rep. Online 2009, 65: 01265Reference Ris Wihthout Link - 21
Hori T.Otani Y.Kawahata M.Yamaguchi K.Ohwada T. J. Org. Chem. 2008, 73: 9102Reference Ris Wihthout Link - 22
Scheibye S.Pedersen BS.Lawesson S.-O. Bull. Soc. Chim. Belg. 1978, 78: 229Reference Ris Wihthout Link - 23
Bagley MC.Chapaneri K.Glover C.Merritt EA. Synlett 2004, 2615Reference Ris Wihthout Link
References and Notes
The amide (5 mmol) was added to a
mixture of O,O-diethyl ammonium
phosphorodithioate salt (10 mmol, 2.03 g)¹6a and toluene
(5 mL), and the reaction mixture was stirred for 4-10 h
at reflux. After stirring for a known period (Table
[²]
), the mixture was evaporated
under reduced pressure. The resulting mixture was subjected to column
chromatography on silica gel with EtOAc-n-hexane
(1:9), and evaporation of the solvent under reduced pressure gave
pure products in 70-91% yields. All products gave
satisfactory spectral data in accord with the assigned structures
and literature reports.9-¹6,¹8-²²
Thiobenzamide (2a)
¹H
NMR (400 MHz, CDCl3): δ = 7.29 (br,
1 H, NH2), 7.43 (t, 2 H, J = 8.0
Hz), 7.54 (t, 1 H, J = 8.0
Hz), 7.89 (d, 2 H, J = 8.0
Hz), 7.90 (br, 1 H, NH2). ¹³C
NMR (100.65 MHz, CDCl3): δ = 126.9,
128.5, 132.1, 139.2, 202.2.
2-Chlorothiobenzamide
(2b)
¹H NMR (400 MHz, CDCl3): δ = 7.35
(br, 1 H, NH2), 7.28-7.48 (m, 3 H), 7.62 (d,
1 H, J = 8.0
Hz), 8.45 (br, 1 H, NH2). ¹³C
NMR (100.65 MHz, CDCl3): δ = 127.1,
128.2, 130.1, 130.2, 131.0, 140.4, 201.5.
3-Chlorothiobenzamide
(2c)
¹H NMR (400 MHz, CDCl3): δ = 7.29
(br, 1 H, NH2), 7.37 (t, 1 H, J = 8.0
Hz), 7.50 (d, 1 H, J = 8.0
Hz), 7.72 (d, 1 H, J = 8.0
Hz), 7.88 (s, 1 H), 7.92 (br, 1 H, NH2). ¹³C
NMR (100.65 MHz, CDCl3): δ = 124.8,
127.3, 131.9, 134.6, 140.8, 201.1.
N
-Phenylthiobenzamide (2d)
¹H
NMR (400 MHz, CDCl3): δ = 7.23-7.90
(m, 10 H), 9.03 (br, 1 H, NH). ¹³C
NMR (100.65 MHz, CDCl3): δ = 123.6, 126.7,
127.0, 128.7, 129.1, 131.3, 138.9, 143.3, 198.3.
N
-(2-Ethylphenyl)thiobenzamide
(2e)
¹H NMR (400 MHz, CDCl3): δ = 1.29
(t, 3 H, J = 7.6
Hz), 2.71 (q, 2 H, J = 7.6
Hz), 7.23-7.45 (m, 3 H), 7.47 (t, 2 H, J = 7.6
Hz), 7.57 (t, 2 H, J = 7.2
Hz), 7.93 (d, 2 H, J = 7.2 Hz),
8.87 (br, 1 H, NH). ¹³C NMR (100.65
MHz, CDCl3): δ = 14.4, 24.5, 126.8,
127.4, 128.5, 128.7, 129.2, 131.5, 137.0, 139.8, 142.2, 200.0.
N
-(4-Methoxyphenyl)thiobenzamide
(2f)
¹H NMR (400 MHz, CDCl3): δ = 3.88
(s, 3 H), 7.01 (d, 2 H, J = 7.2
Hz), 7.45 (t, 2 H, J = 7.6
Hz), 7.53 (t, 1 H, J = 7.2 Hz),
7.66 (d, 2 H, J = 7.2
Hz), 7.89 (d, 2 H, J = 7.2
Hz), 8.97 (br, 1 H, NH). ¹³C NMR (100.65
MHz, CDCl3): δ = 55.5, 114.2, 125.6,
126.7, 128.7, 129.2, 131.3, 131.9, 143.0, 158.2, 198.2.
N
-(4-Bromophenyl)thiobenzamide
(2g)
¹H NMR (400 MHz, CDCl3): δ = 7.40-7.65
(m, 5 H), 7.74 (d, 2 H, J = 7.2
Hz), 7.87 (d, 2 H, J = 7.2
Hz), 8.98 (br, 1 H, NH). ¹³C NMR (100.65
MHz, CDCl3): δ = 119.9, 125.1, 128.8,
129.2, 131.5, 132.2, 137.9, 198.0.
N
-Cyclohexylthiobenzamide (2h)
¹H
NMR (400 MHz, CDCl3): δ = 1.19-1.60
(m, 5 H), 1.62-1.85 (m, 3 H), 2.17-2.25 (m, 2
H), 4.48-4.61 (m, 1 H), 7.36 (t, 2 H, J = 7.6
Hz), 7.44 (t, 1 H, J = 7.2
Hz), 7.54 (br, 1 H, NH), 7.70 (d, 2 H, J = 7.2
Hz). ¹³C NMR (100.65 MHz, CDCl3): δ = 24.7,
25.5, 31.6, 55.0, 126.7, 128.4, 130.9, 142.3, 197.6.
2-Chloro-
N
-cyclohexylthiobenzamide (2i)
¹H
NMR (400 MHz, CDCl3): δ = 1.19-1.60
(m, 5 H), 1.62-1.85 (m, 3 H), 2.17-2.25 (m, 2
H), 4.48-4.62 (m, 1 H), 7.27-7.40 (m, 3 H, NH),
7.50-7.40 (m, 1 H), 7.57-7.62 (m, 1 H). ¹³C
NMR (100.65 MHz, CDCl3): δ = 24.6,
25.5, 31.3, 54.8, 127.0, 128.3, 129.9, 130.1, 130.3, 142.2, 195.5.
N,N-
Dimethylthiobenzamide
(2j)
¹H NMR (400 MHz, CDCl3): δ = 3.03
(s, 3 H), 3.47 (s, 3 H), 7.15-7.29 (m, 5 H). ¹³C
NMR (100.65 MHz, CDCl3): δ = 43.2,
44.2, 125.7, 128.3, 128.5, 143.3, 200.7.
4-Methyl-
N
,
N-
dimethylthiobenzamide
(2k)
¹H NMR (400 MHz, CDCl3): δ = 2.34
(s, 3 H), 3.16 (s, 3 H), 3.57 (s, 3 H), 7.13 (d, 2 H, J = 8.0 Hz),
7.20 (d, 2 H, J = 8.0 Hz). ¹³C
NMR (100.65 MHz, CDCl3): δ = 21.3,
43.4, 44.3, 125.9, 128.9, 138.7, 140.6, 201.4.
4-Chloro-
N
,
N-
dimethylthiobenzamide (2l)
CAS
No. 15563-46. ¹H NMR (400 MHz, CDCl3): δ = 3.19 (s,
3 H), 3.60 (s, 3 H), 7.26 (d, 2 H, J = 8.4
Hz), 7.34 (d, 2 H, J = 8.4
Hz). ¹³C NMR (100.65 MHz, CDCl3): δ = 43.3,
44.2, 127.3, 128.6, 134.6, 141.6, 199.8.
3-Methyl-
N
,
N-
dimethylthiobenzamide
(2m)
¹H NMR (400 MHz, CDCl3): δ = 2.34
(s, 3 H), 3.14 (s, 3 H), 3.57 (s, 3 H), 7.05 (d, 1 H, J = 7.6 Hz),
7.12 (d, 2 H, J = 6.0 Hz),
7.22 (d, 1 H, J = 8.0
Hz). ¹³C NMR (100.65 MHz, CDCl3): δ = 21.4,
43.2, 44.2, 122.6, 126.3, 128.2, 129.3, 138.1, 143.4, 201.4.
Thioacetamide (2n)
CAS No. 62-55-5. ¹H
NMR (400 MHz, CDCl3): δ = 3.34 (s, 3
H), 8.90-9.20 (br, 2 H, NH2). ¹³C
NMR (100.65 MHz, CDCl3): δ = 31.0,
206.1.