Synthesis 2012; 44(15): 2385-2395
DOI: 10.1055/s-0031-1289810
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 6H-Dibenzo[b,d]pyran-6-one Derivatives via Coumarin-Fused Cyclohexa-1,3-diene Intermediates

Chao-Yue Chen
a  School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
,
Yong-Sheng Zhao
a  School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
,
Chang-Bing Xiang
a  School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
,
Zhi-Zhen Huang*
a  School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
b  Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. of China, Fax: +86(25)83686240   Email: huangzz@nju.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 10 April 2012

Accepted after revision: 14 May 2012

Publication Date:
04 July 2012 (online)


Abstract

In the presence of trifluoroacetic acid and methanesulfonic acid (MSA), a series of monohydric and polyhydric phenols readily undergo a domino Pechmann–dehydration reaction with various 4-hydroxy-6-oxocyclohexane-1,3-dicarboxylates to give 7,8-dihydro-6H-dibenzo[b,d]pyran-6-ones. Subsequent dehydrogenation of the 7,8-dihydro-6H-dibenzo[b,d]pyran-6-ones was performed expediently with DBU/BrCCl3 to give various 6H-dibenzo[b,d]pyran-6-one derivatives. This strategy has the advantages of inexpensive and easily available raw materials, metal-free procedure, mild reaction conditions, good compatibility with various functional groups, and satisfactory yields.

Supporting Information

 
  • References

    • 1a Bialonska D, Kasimsetty SG, Khan SI, Ferreira D. J. Agric. Food Chem. 2009; 57: 10181
    • 1b González-Barrio R, Truchado P, Ito H, Espín JC, Tomás-Barberán FA. J. Agric. Food Chem. 2011; 59: 1152
    • 1c Garazd YaL, Ogorodniichuk AS, Garazd MM, Khilya VP. Chem. Nat. Compd. 2002; 38: 424
    • 1d Ito H, Iguchi A, Hatano T. J. Agric. Food Chem. 2008; 56: 393
    • 2a Abe H, Nishioka K, Takeda S, Arai M, Takeuchi Y, Harayama T. Tetrahedron Lett. 2005; 46: 3197
    • 2b Zhang H.-W, Huang W.-Y, Song Y.-C, Chen J.-R, Tan R.-X. Helv. Chim. Acta 2005; 88: 2861
    • 2c Sun C.-L, Liu J, Wang Y, Zhou X, Li B.-J, Shi Z.-J. Synlett 2011; 883
    • 2d Altemöller M, Gehring T, Cudaj J, Podlech J, Goesmann H, Feldmann C, Rothenberger A. Eur. J. Org. Chem. 2009; 2130
    • 3a Cordero-Vargas A, Quiclet-Sire B, Zard SZ. Org. Biomol. Chem. 2005; 3: 4432
    • 3b Takemura I, Imura K, Matsumoto T, Suzuki K. Org. Lett. 2004; 6: 2503
    • 3c James CA, Snieckus V. J. Org. Chem. 2009; 74: 4080
    • 3d Pottie IR, Nandaluru PR, Benoit WL, Miller DO, Dawe LN, Bodwell GJ. J. Org. Chem. 2011; 76: 9015
    • 3e Madan S, Cheng CH. J. Org. Chem. 2006; 71: 8312
  • 4 Findlay JA, Daljeet A, Murray PJ, Rej RN. Can. J. Chem. 1987; 65: 427
    • 5a Pandey J, Jha AK, Hajela K. Bioorg. Med. Chem. 2004; 12: 2239
    • 5b Teske JA, Dieters A. Org. Lett. 2008; 10: 2195
    • 6a Darbarwar M, Sundaramurthy V. Synthesis 1982; 337
    • 6b Kawasaki T, Yamamoto Y. J. Org. Chem. 2002; 67: 5138 ; and references cited therein
    • 7a Sawada K, Hirai H, Golden P, Okada S, Sawada Y, Hashimoto M, Tanaka H. Chem. Pharm. Bull. 1998; 46: 1683
    • 7b Pisani L, Catto M, Giangreco I, Leonetti F, Nicolotti O, Stefanachi A, Cellamare S, Carotti A. ChemMedChem 2010; 5: 1616
    • 7c Chebaane K, Guyot M, Molho D. Bull. Soc. Chim. Fr. 1975; 2521
    • 7d McGee LR, Confalone PN. J. Org. Chem. 1988; 53: 3695
    • 7e Hua DH, Saha S, Roche D, Maeng JC, Iguchi S, Baldwin C. J. Org. Chem. 1992; 57: 399
    • 7f Kwok D.-I, Outten RA, Huhn R, Daves GD. Jr. J. Org. Chem. 1988; 53: 5359
    • 7g Guillaumet G, Hretani M, Coudert G, Averbeck D, Averbeck S. Eur. J. Med. Chem. 1990; 25: 45
    • 7h Bovy PR, Collins JT, McMahon EG, Hutton WC. J. Med. Chem. 1991; 34: 2410
    • 7i Outten RA, Daves GD. Jr. J. Org. Chem. 1989; 54: 29
    • 7j Santana L, González-Díaz H, Quezada E, Uriarte E, Yáñez M, Viña D, Orallo F. J. Med. Chem. 2008; 51: 6740
  • 8 Metwally MA, Khalil AM. J. Indian Chem. Soc. 1988; 65: 766 ; 1H NMR and 13C NMR of the two coumarin-fused 2-cyclohexadienes were not determined in this paper
    • 9a Pandiarajan K, Sabapathy MohanR. T, Gomathi R, Muthukumaran G. Magn. Reson. Chem. 2005; 43: 430
    • 9b Srinivasan M, Perumal S. Tetrahedron 2006; 62: 7726
    • 9c Blatt AH. Org. Synth. Coll. Vol. II . John Wiley & Sons; London: 1969: 215
    • 9d Horning EC, Denekas MO, Field RE. J. Org. Chem. 1944; 9: 547
  • 10 Kitamura T, Yamamoto K, Kotani M, Oyamada J, Jia C, Fujiwara Y. Bull. Chem. Soc. Jpn. 2003; 76: 1889
  • 11 Prajapati D, Gohain M. Catal. Lett. 2007; 119: 59
    • 12a Bose DS, Rudradas AP, Hari Babu M. Tetrahedron Lett. 2002; 43: 9195
    • 12b Potdar MK, Mohile SS, Salunkhe MM. Tetrahedron Lett. 2001; 42: 9285
    • 12c Maheswara M, Siddaiah V, Lakishmi G, Damu V, Rao YK, Rao CV. J. Mol. Catal. A: Chem. 2006; 255: 49
    • 13a Karplus M. J. Chem. Phys. 1959; 30: 11
    • 13b Karplus M. J. Am. Chem. Soc. 1963; 85: 2870 . According to the Karplus relationship, the maximum coupling constant 3J will occur when the dihedral angle is 0° or 180° and the minimum coupling constant (often ≈ 0 Hz) occurs when the dihedral angle is about 90°
    • 14a Williams DR, Lowder PD, Gu YG, Brooks DA. Tetrahedron Lett. 1997; 38: 331
    • 14b Williams DR, Brooks DA, Berliner MA. J. Am. Chem. Soc. 1999; 121: 4924