Abstract
1,2-Metallate rearrangements involving reaction of 1-metallated
glycals with organolithium reagents under copper(I) mediation give
alkenylpolyol chains in 45-91% yield (19 examples). The
reaction was applied to a formal synthesis of KRN7000 as well as
a synthesis of a Δ5,6 -ceramide derivative.
Key words
1,2-metallate rearrangement - retro-[1,4]-Brook
rearrangement - 1-metallated glycals - cuprates - organolithiums - KRN7000
References
<A NAME="RN112711SS-1">1 </A>
Kocieński P.
Wadman S.
Cooper K.
J.
Am. Chem. Soc.
1989,
111:
2363
<A NAME="RN112711SS-2">2 </A>
Fujisawa T.
Kurita Y.
Kawashima M.
Sato T.
Chem. Lett.
1982,
1642
<A NAME="RN112711SS-3">3 </A>
Kocieński PJ.
Barber C.
Pure Appl.
Chem.
1990,
62:
1933
<A NAME="RN112711SS-4">4 </A>
Kocieński P. In
Organic Synthesis via Organometallics
Enders D.
Gais H.-J.
Keim W.
Verlag Vieweg;
Wiesbaden:
1993.
p.203
<A NAME="RN112711SS-5">5 </A>
Jarowicki K.
Kocieński PJ.
Qun L.
Org. Synth. Coll. Vol.
10
Wiley;
New York:
2004.
p.662
<A NAME="RN112711SS-6">6 </A>
Jarowicki K.
Kocieński P.
Norris S.
O’Shea M.
Stocks M.
Synthesis
1995,
195
<A NAME="RN112711SS-7">7 </A>
Pommier A.
Stepanenko V.
Jarowicki K.
Kocieński PJ.
J. Org.
Chem.
2003,
68:
4008
<A NAME="RN112711SS-8">8 </A>
Fargeas V.
Ménez PL.
Berque I.
Ardisson J.
Pancrazi A.
Tetrahedron
1996,
52:
6613
<A NAME="RN112711SS-9">9 </A>
Ashworth P.
Broadbelt B.
Jankowski P.
Kocieński P.
Pimm A.
Bell R.
Synthesis
1995,
199
<A NAME="RN112711SS-10">10 </A>
Hareau-Vittini G.
Kocieński P.
Reid G.
Synthesis
1995,
1007
<A NAME="RN112711SS-11">11 </A>
Hareau-Vittini G.
Kocieński P.
Synlett
1995,
893
<A NAME="RN112711SS-12">12 </A>
Milne JE.
Jarowicki K.
Kocieński PJ.
Alonso J.
Chem. Commun.
2002,
426
<A NAME="RN112711SS-13">13 </A>
Lesimple P.
Beau J.-M.
Sinaÿ P.
J.
Chem. Soc., Chem. Commun.
1985,
894
<A NAME="RN112711SS-14">14 </A>
Gunn A.
Jarowicki K.
Kocieński P.
Lockhart S.
Synthesis
2001,
331
<A NAME="RN112711SS-15">15 </A>
Braun M.
Mahler H.
Justus Liebigs Ann.
1995,
29
<A NAME="RN112711SS-16">16 </A>
Bures E.
Spinazzé PG.
Beese G.
Hunt IR.
Rogers C.
Keay BA.
J.
Org. Chem.
1997,
62:
8741
<A NAME="RN112711SS-17">17 </A>
Comanita BM.
Woo S.
Fallis AG.
Tetrahedron
Lett.
1999,
40:
5283
<A NAME="RN112711SS-18">18 </A>
Simpkins SME.
Kariuki BM.
Aricó CS.
Cox LR.
Org.
Lett.
2003,
5:
3971
<A NAME="RN112711SS-19">19 </A>
Yamago S.
Fujita K.
Miyoshi M.
Kotani M.
Yoshida J.
Org.
Lett.
2005,
7:
909
<A NAME="RN112711SS-20">20 </A>
Mori H.
Matsuo T.
Yoshioka Y.
Katsumura S.
J. Org. Chem.
2006,
71:
9004
<A NAME="RN112711SS-21">21 </A>
In all of our earlier studies we
routinely used Me2 S as a cosolvent on the assumption
that it stabilised the higher order cuprate intermediates. However,
we later discovered that Me2 S is deleterious to the CuCN-mediated
reactions in some cases. In the case of CuBr-mediated reactions,
the presence of Me2 S as a co-solvent generally had a
neutral or beneficial effect.
<A NAME="RN112711SS-22">22 </A>
A further advantage to procedure
1 is that CuCN is stable in its Cu(I) oxidation state and hence
requires no further purification whereas CuBr should be purified
as its Me2 S complex since Cu(II) contamination can cause
messy reactions and low yields.
<A NAME="RN112711SS-23">23 </A>
Jarowicki K.
Kilner C.
Kocieński PJ.
Komsta Z.
Milne JE.
Wojtasiewicz A.
Coombs V.
Synthesis
2008,
2747
<A NAME="RN112711SS-24">24 </A>
Zhang H.-C.
Brakta M.
Daves GD.
Tetrahedron Lett.
1993,
34:
1571
<A NAME="RN112711SS-25">25 </A>
Natori T.
Koezuka Y.
Higa T.
Tetrahedron
Lett.
1993,
34:
5591
<A NAME="RN112711SS-26">26 </A>
Natori T.
Morita M.
Akimoto K.
Koezuka Y.
Tetrahedron
1994,
50:
2771
<A NAME="RN112711SS-27">27 </A>
Banchet-Cadeddu A.
Hénon E.
Dauchez M.
Renault
J.-H.
Monneaux F.
Haudrechy A.
Org. Biomol. Chem.
2011,
9:
3080
<A NAME="RN112711SS-28">28 </A>
Chen G.
Chien M.
Tsuji M.
Franck RW.
ChemBioChem
2006,
7:
1017
<A NAME="RN112711SS-29">29 </A>
Franck RW.
Tsuji M.
Acc. Chem. Res.
2006,
39:
692
<A NAME="RN112711SS-30">30 </A>
Morita M.
Motoki K.
Akimoto K.
Natori T.
Sakai T.
Sawa E.
Yamaji K.
Koezuka Y.
Kobayashi E.
Fukushima H.
J. Med. Chem.
1995,
38:
2176
<A NAME="RN112711SS-31">31 </A>
Enders D.
Terteryan V.
Paleček J.
Synthesis
2010,
2979
<A NAME="RN112711SS-32">32 </A>
Meek SJ.
O’Brien RV.
Llaveria J.
Schrock RR.
Hoveyda AH.
Nature
2011,
471:
461
<A NAME="RN112711SS-33">33 </A>
Figueroa-Pérez S.
Schmidt RR.
Carbohydr.
Res.
2000,
328:
95
<A NAME="RN112711SS-34">34 </A>
During their pioneering studies on
the synthesis of agelasphin analogues that led to the discovery
of KRN7000, Koezuka and co-workers had prepared Δ5,6 -sphinganine precursors
(see ref. 30).
<A NAME="RN112711SS-35">35 </A>
By contrast 1,2-metallate rearrangements
of simple lithiated dihydrofurans and dihydropyrans mediated by
CuCN require only 1.1-1.5 equivalents of the organolithium reagent
or 2.2 equivalents if the corresponding stannane is used.
<A NAME="RN112711SS-36">36 </A>
Black FJ.
Kocieński PJ.
Org. Biomol.
Chem.
2010,
8:
1188