Subscribe to RSS
DOI: 10.1055/s-0031-1289712
Efficient Preparation of β-Branched γ,δ-Unsaturated Esters through Copper-Catalyzed Allylic Alkylation of Ketene Silyl Acetal
Publication History
Publication Date:
15 February 2012 (online)
Abstract
Copper-catalyzed allylic alkylation of ketene silyl acetals proceeded with excellent γ-E-selectivity. Efficient α-to-γ chirality transfer with anti-selectivity occurred in the reaction of enantioenriched secondary allylic phosphates, affording enantioenriched β-branched γ,δ-unsaturated esters. The reaction was readily scalable and highly reliable in terms of product yield and stereoselectivities.
Key words
γ,δ-unsaturated esters - copper - allylic alkylation - ketene silyl acetal - regioselectivity
- For reviews on transition-metal-catalyzed allylic substitutions, see:
-
1a
Tsuji J. Acc. Chem. Res. 1969, 2: 144 -
1b
Trost BM. Tetrahedron 1977, 33: 2615 -
1c
Trost BM.Van Vranken DL. Chem. Rev. 1996, 96: 395 -
1d
Trost BM.Crawley ML. Chem. Rev. 2003, 103: 2921 -
1e
Lu Z.Ma S. Angew. Chem. Int. Ed. 2008, 47: 258 - For selected examples on transition-metal-catalyzed enantioselective allylic alkylations with ketone enolates, see:
-
2a
Trost BM.Shroeder GM. J. Am. Chem. Soc. 1999, 121: 6759 -
2b
Braun M.Laicher F.Meier T. Angew. Chem. Int. Ed. 2000, 39: 3494 -
2c
Burger EC.Tunge JA. Org. Lett. 2004, 6: 4113 -
2d
Behenna DC.Stoltz BM. J. Am. Chem. Soc. 2005, 126: 15044 -
2e
Yan X.-X.Liang C.-G.Zhang Y.Hong W.Cao B.-X.Dai L.-X.Hou X.-L. Angew. Chem. Int. Ed. 2005, 44: 6544 -
2f
Trost BM.Xu J. J. Am. Chem. Soc. 2005, 127: 17180 -
2g
Zheng W.-H.Zheng B.-H.Zhang Y.Hou X.-L.
J. Am. Chem. Soc. 2007, 129: 7718 -
2h
Chen J.-P.Ding C.-H.Liu W.Hou X.-L.Dai L.-X. J. Am. Chem. Soc. 2010, 132: 15493 -
2i
Braun M.Meier T. Angew. Chem. Int. Ed. 2006, 45: 6952 ; and references therein -
2j
Graening T.Hartwig JF. J. Am. Chem. Soc. 2004, 127: 17192 - For rhodium-catalyzed α-selective allylic alkylations of copper enolates derived from aryl ketones with chiral secondary allylic alcohol derivatives bearing a terminal alkene moiety, see:
-
4a
Evans PA.Leahy DK. J. Am. Chem. Soc. 2003, 125: 8974 -
4b
Evans PA.Lawler MJ. J. Am. Chem. Soc. 2004, 126: 8642 - 5 Rhodium-catalyzed allylic substitution
of allylic carbonates having an allylic system in the internal position
with enoxysilanes occurred competitively at the α- and γ-posi-tions,
see:
Muraoka T.Matsuda I.Itoh K. Tetrahedron Lett. 2000, 41: 8807 - For Rh-catalyzed α-selective allylic alkylations of malonates with secondary allylic substrates, see:
-
6a
Evans PA.Nelson JD. Tetrahedron Lett. 1998, 39: 1725 -
6b
Evans PA.Nelson JD. J. Am. Chem. Soc. 1998, 120: 5581 -
6c
Ashfeld BL.Miller KA.Martin SF. Org. Lett. 2004, 6: 1321 - For iridium-catalyzed α-selective allylic alkylations of malonates with secondary allylic substrates, see:
-
7a
Takeuchi R.Kashio M. J. Am. Chem. Soc. 1998, 120: 8647 -
7b
Bartels B.Helmchen G. Chem. Commun. 1999, 741 - For iron-catalyzed α-selective allylic alkylations of soft carbon nucleophiles with secondary allylic substrates, see:
-
8a
Yanagisawa A.Nomura N.Yamamoto H. Synlett 1991, 513 -
8b
Plietker B. Angew. Chem. Int. Ed. 2006, 45: 1469 -
8c
Holzwarth M.Dieskau A.Tabassam M.Plietker B. Angew. Chem. Int. Ed. 2009, 48: 7251 - For ruthenium-catalyzed α-selective allylic alkylations of malonates with secondary allylic substrates, see:
-
9a
Trost BM.Fraisse PL.Ball ZT. Angew. Chem. Int. Ed. 2002, 41: 1059 -
9b
Kawatsura M.Ata F.Hayase S.Itoh T. Chem. Commun. 2007, 4283 - 10
Li D.Ohmiya H.Sawamura M. J. Am. Chem. Soc. 2011, 133: 5672 - For copper-catalyzed γ-selective and stereospecific allyl-alkyl and allyl-aryl couplings with organoboron compounds, see:
-
11a
Ohmiya H.Yokobori U.Makida Y.Sawamura M. J. Am. Chem. Soc. 2010, 132: 2895 -
11b
Ohmiya H.Yokokawa N.Sawamura M. Org. Lett. 2010, 12: 2438 -
11c
Whittaker AM.Rucker RP.Lalic G. Org. Lett. 2010, 12: 3216 -
11d
Shintani R.Takatsu K.Takeda M.Hayashi T. Angew. Chem. Int. Ed. 2011, 50: 8656 - For palladium-catalyzed γ-selective and stereospecific allyl-aryl coupling between allylic esters and arylboronic acids, see:
-
12a
Ohmiya H.Makida Y.Tanaka T.Sawamura M. J. Am. Chem. Soc. 2008, 130: 17276 -
12b
Ohmiya H.Makida Y.Li D.Tanabe M.Sawamura M. J. Am. Chem. Soc. 2010, 132: 879 -
12c
Li D.Tanaka T.Ohmiya H.Sawamura M. Org. Lett. 2010, 12: 3344 -
12d
Makida Y.Ohmiya H.Sawamura M. Chem. Asian J. 2011, 6: 410 - For reviews on the Claisen rearrangement, see:
-
13a
Ziegler FE. Chem. Rev. 1988, 88: 1423 -
13b
Castro AMM. Chem. Rev. 2004, 104: 2939 - 14 For the rhodium-catalyzed reductive
Claisen rearrangement and discussions on the functional group compatibility
of the Ireland-Claisen rearrangement, see:
Miller SP.Morken JP. Org. Lett. 2002, 4: 2743 - For discussions on the functional group compatibility of the Johnson-Claisen rearrangement, see:
-
15a
Cosgrove KL.McGeary RP. Synlett 2009, 1749 -
15b
Cosgrove KL.McGeary RP. Tetrahedron 2010, 66: 3050 - 17
Menéndez Pérez B.Hartung J. Tetrahedron Lett. 2009, 50: 960
References
The regioselectivity in palladium-catalyzed allylic substitutions that involve a (π-allyl)palladium intermediates is highly dependent on the substitution pattern of allylic substrates. See refs 1 and 2a-i.
16See the Supporting Information of ref. 6 for procedures