Synlett 2011(18): 2689-2692  
DOI: 10.1055/s-0031-1289549
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Vinyllactones via Allylic Oxidation of Alkenoic Acids

Martina Bischop, Jörg Pietruszka*
Institut für Bioorganische Chemie der Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, Stetternicher Forst, Geb. 15.8, 52426 Jülich, Germany
Fax: +49(2461)616196; e-Mail: j.pietruszka@fz-juelich.de;
Further Information

Publication History

Received 19 August 2011
Publication Date:
19 October 2011 (online)

Abstract

A one-step access to vinyllactones is described utilizing the Pd-catalyzed allylic oxidation of alkenoic acids. The influence of ring size as well as the olefin configuration is investigated culminating in the synthesis of goniothalamin analogues.

    References and Notes

  • Selected examples:
  • 1a Corey EJ. Guzman-Perez A. Lazerwith SE. J. Am. Chem. Soc.  1997,  119:  11769 
  • 1b Jacobo SH. Chang C.-T. Lee G.-J. Lawson JA. Powell WS. Pratico D. FitzGerald GA. Rokach J.
    J. Org. Chem.  2006,  71:  1370 
  • 1c Mac DH. Samineni R. Petrignet J. Srihari P. Chandrasekhar S. Yadav JS. Grée R. Chem Commun.  2009,  4717 
  • 1d Fischer T. Pietruszka J. Adv. Synth. Catal.  2007,  348:  4388 
  • 1e Larock RC. Hightower TR. J. Org. Chem.  1993,  58:  5298 
  • 1f Annby U. Stenkula M. Andersson C.-M. Tetrahedron Lett.  1993,  34:  8545 
  • 1g For a recent review on Pd-catalyzed allylic C-H bond activation, see: Liu G. Wu Y. Top. Curr. Chem.  2010,  292:  195 
  • Leading references:
  • 2a Stang EM. White MC. Angew. Chem. Int. Ed.  2011,  50:  547 
  • 2b Stang EM. White MC. Nat. Chem.  2009,  1:  2094 
  • 2c Fraunhoffer KJ. Prabagaran N. Sirois LE. White MC. J. Am. Chem. Soc.  2006,  128:  9032 
  • 3a Korpak M. Pietruszka J. Adv. Synth. Catal.  2011,  353:  1420 
  • 3b Bischop M. Doum V. Nordschild née Rieche ACM. Pietruszka J. Sandkuhl D. Synthesis  2010,  527 
  • 3c Pietruszka J. Rieche ACM. Adv. Synth. Catal.  2008,  350:  1407 
  • 3d Pietruszka J. Rieche ACM. Schöne N. Synlett  2007,  2525 
  • 3e Pietruszka J. Wilhelm T. Synlett  2003,  1698 
  • 4 Walborsky HM. Topolski M. Hamdouchi C. Pankowski J. J. Org. Chem.  1992,  57:  6188 
  • 5a For compound 9a, see: DeMartino MP. Chen K. Baran PS. J. Am. Chem. Soc.  2008,  130:  11546 
  • 5b For compounds 9b-e, see: Kaga H. Miura M. Orito K. J. Org. Chem.  1989,  54:  3477 
  • 6 For a recent review, see: Caddick S. Fitzmaurice R. Tetrahedron  2009,  65:  3325 
  • 7 Covell Dustin J. White MC. Angew. Chem. Int. Ed.  2008,  47:  6448 
  • 8 Hiebel M.-A. Pelotier B. Goekjian P. Piva O. Eur. J. Org. Chem.  2008,  713 
  • 9 Wang Y.-G. Kobayashi Y. Org. Lett.  2002,  4:  4615 
  • 10 The syn isomer was recently utilized for the synthesis of the lyngbouillodide macrolactone core: Webb D. van den Heuvel A. Koegl M. Ley SV. Synlett  2009,  2320 
  • 11 Guerlavais V. Carroll PJ. Joullié MM. Tetrahedron: Asymmetry  2002,  13:  675 
  • 12a Fürstner A. Radkowski K. Wirtz C. Goddard R. Lehmann CW. Mynott R. J. Am. Chem. Soc.  2002,  124:  7061 
  • 12b Evans DA. Weber AE. J. Am. Chem. Soc.  1987,  109:  7151 
  • 12c Macritchie JA. Silcock A. Willis CL. Tetrahedron: Asymmetry  1997,  8:  3895 
  • 13 Nagai K. Doi T. Sekiguchi T. Namatame I. Sunazuka T. Tomoda H. Omura S. Takahashi T. J. Comb. Chem.  2005,  8:  103 
  • 14a Garber SB. Kingsbury JS. Gray BL. Hovedya AH. J. Am. Chem. Soc.  2000,  122:  8168 
  • 14b Gessler S. Randl S. Blechert S. Tetrahedron Lett.  2000,  41:  9973 
  • 15 Matsuo J.-i. Aizawa Y. Tetrahedron Lett.  2005,  46:  407 
  • 16a Hlubucek JR. Robertson AV. Aust. J. Chem.  1967,  20:  2199 
  • 16b Bose DS. Reddy AVN. Srikanth B. Synthesis  2008,  2323 
  • 18 For a recent SAR study, see: de Fatima A. Modolo LV. Conegero LS. Pilli RA. Ferreira CV. Kohn LK. de Carvalho JE. Curr. Med. Chem.  2006,  13:  3371 
  • 19 The synthesis of isomers of compound 25 was recently reported: Diba AK. Noll C. Richter M. Gieseler MT. Kalesse M. Angew. Chem.  2010,  122:  8545 
17

Selected Data for Acid 23
[α]D ²0 +17.2 (c 0.96, CHCl3). IR (film): νmax = 3073, 2977, 2935, 2861, 2648, 1702, 1642, 1465, 1417, 1381, 1290, 1236, 1191, 996, 910, 812, 742 cm. ¹H NMR (600 MHz, CDCl3): δ = 1.19 (d, ³ J Me,2 = 7.0 Hz, 3 H, CH3), 1.41-1.49 (m, 3 H, 3-Ha, 4-H), 1.66-1.73 (m, 1 H, 3-Hb), 2.05-2.09 (m, 2 H, 5-H), 2.47 (mc, 1 H, 2-H), 4.96 (ddt, ³ J 7E,6 = 10.2 Hz, ² J 7 E ,7 Z  = 2.0 Hz, 4 J 7 E ,5 = 1.2 Hz, 1 H, 7-H E ), 5.01 (ddd, ³ J 7 Z ,6 = 17.1 Hz, ² J 7 Z ,7 E  = 2.0 Hz, 4 J 7 Z ,5 = 1.6 Hz, 1 H, 7-H Z ), 5.80 (ddt, ³ J 6,7 Z  = 17.1 Hz, ³ J 6,7 E  = 10.2 Hz, ³ J 6,5 = 6.7 Hz, 1 H, 6-H), 11.5 (br s, 1 H, COOH) ppm. ¹³C NMR (151 MHz, CDCl3): δ = 16.9 (CH3), 26.4 (C-4), 32.9 (C-3), 33.6 (C-5), 39.2 (C-2), 114.8 (C-7), 138.4 (C-6), 183.0 (C-1) ppm.
MS (EI, 70 eV): m/z (%) = 124 (2) [M - OH]+, 101 (3) [C5H8O2]+, 96 (6) [C7H13]+, 87 (13) [C4H6O2]+, 74 (100) [C3H5O2]+, 69 (90) [C4H6O]+, 55 (38) [C3H4O]+. Anal. Calcd for C8H14O2 (142.20): C, 67.57; H, 9.92. Found: C, 67.52; H, 10.02.
Selected Data for Vinyllactone 25 ¹9
IR (film): νmax = 3027, 2967, 2935, 2875, 1729, 1599, 1578, 1495, 1450, 1376, 1363, 1239, 1184, 1100, 1073, 1011, 969, 933, 749, 694 cm. MS (EI, 70 eV): m/z (%) = 216 (73) [M]+, 187 (5) [C13H16O]+, 160 (7) [C11H12O]+, 146 (37) [C10H10O]+, 129 (77) [C10H10]+, 115 (54) [C9H8]+, 104 (100) [C8H7]+, 91 (61) [C7H6]+, 77 (30) [C6H5]+, 56 (80) [C4H8]+. Anal. Calcd for C14H16O2 (216.28): C, 77.75; H, 7.46. Found: C, 77.52; H, 7.35.
Isomer 25a
[α]D ²0 +18.2 (c 0.60, CHCl3). ¹H NMR (600 MHz, CDCl3): δ = 1.35 (d, ³ J Me,3 = 7.1 Hz, 3 H, CH3), 1.63-1.70 (m, 1 H, 4-Ha), 1.78-1.85 (m, 1 H, 5-Ha), 2.08-2.12 (m, 2 H, 4-Hb, 5-Hb), 2.53 (ddq, ³ J 3,4a = 8.8 Hz, ³ J 3,4b = 7.0 Hz, ³ J 3,Me = 7.0 Hz, 1 H, 3-H), 4.97 (dddd, ³ J 6,5a = 10.9 Hz, ³ J 6,1  = 6.2 Hz, ³ J 6,5b = 3.4 Hz, 4 J 6,2  = 1.4 Hz, 1 H, 6-H), 6.21 (dd, ³ J 1 ,2  = 16.0 Hz, ³ J 1 ,6 = 6.2 Hz, 1 H, 1′-H), 6.66 (dd, ³ J 2 ,1  = 16.0 Hz, 4 J 2 ,6 = 1.4 Hz, 1 H, 2′-H), 7.25-7.28 (m, 1 H, arom. 4-CH), 7.31-7.34 (m, 2 H, arom. CH), 7.37-7.39 (m, 2 H, arom. CH) ppm. ¹³C NMR (151 MHz, CDCl3): δ = 14.3 (CH3), 28.2 (C-4), 29.5 (C-5), 36.0 (C-3), 81.5 (C-6), 126.6 (arom. CH), 127.5 (C-1′), 128.1 (arom. 4-CH), 128.7 (arom. CH), 131.9 (C-2′), 136.0 (arom. Cipso), 174.0 (C-2) ppm.
Isomer 25b
[α]D ²0 +29.2 (c 1.35, CHCl3). ¹H NMR (600 MHz, CDCl3): δ = 1.27 (d, ³ J Me,3 = 6.8 Hz, 3 H, CH3), 1.58-1.64 (m, 1 H, 4-Ha), 1.82-1.89 (m, 1 H, 5-Ha), 2.05-2.16 (m, 2 H, 4-Hb, 5-Hb), 2.66 (ddq, ³ J 3,4a = 10.5 Hz, ³ J 3,4b = 7.8 Hz, ³ J 3,Me = 6.8 Hz, 1 H, 3-H), 5.00 (dddd, ³ J 6,5a = 9.9 Hz, ³ J 6,1  = 6.0 Hz, ³ J 6,5b = 4.0 Hz, 4 J 6,2  = 1.4 Hz, 1 H, 6-H), 6.20 (dd, ³ J 1 ,2  = 16.0 Hz, ³ J 1 ,6 = 6.0 Hz, 1 H, 1′-H), 6.67 (dd, ³ J 2 ,1  = 16.0 Hz, 4 J 2 ,6 = 1.4 Hz, 1 H, 2′-H), 7.25-7.28 (m, 1 H, arom. 4-CH), 7.31-7.34 (m, 2 H, arom. CH), 7.37-7.39 (m, 2 H, arom. CH) ppm. ¹³C NMR (151 MHz, CDCl3): δ = 16.4 (CH3), 25.4 (C-4), 27.5 (C-5), 33.7 (C-3), 78.3
(C-6), 126.4 (arom. CH), 126.6 (C-1′), 128.1 (arom. 4-CH), 128.7 (arom. CH), 132.1 (C-2′), 136.0 (arom. Cipso), 175.4 (C-2) ppm.
Selected Data for Goniothalamin Analogue 26
[α]D ²0 -152.5 (c 1.5, CHCl3). IR (film): νmax = 3028, 2926, 1710, 1599, 1578, 1495, 1450, 1362, 1338, 1230, 1144, 1109, 1081, 1042, 1014, 968, 918, 861, 753, 731, 693 cm. ¹H NMR (600 MHz, CDCl3): δ = 1.95 (dt, 4 J Me,4 = 2.2 Hz, 5 J Me,5 = 1.5 Hz, 3 H, CH3), 2.48-2.52 (m, 2 H, 5-H), 5.05 (mc, 1 H, 6-H), 6.27 (dd, ³ J 1 ,2  = 15.9 Hz, ³ J 1 ,6 = 6.3 Hz, 1 H, 1′-H), 6.61 (mc, 1 H, 4-H), 6.71 (dd, ³ J 2 ,1  = 15.9 Hz, 4 J 2 ,6 = 1.4 Hz, 1 H, 2′-H), 7.26-7.29 (m, 1 H, arom. 4-CH), 7.32-7.34 (m, 2 H, arom. CH), 7.38-7.40 (m, 2 H, arom. CH) ppm. ¹³C NMR (151 MHz, CDCl3): δ = 17.1 (CH3), 30.3 (C-5), 78.0 (C-6), 126.0 (C-1′), 126.9, 128.3, 128.8 (arom. CH), 128.9 (C-3), 132.8 (C-2′), 135.9 (arom. Cipso), 138.5 (C-4), 165.5 (C-2) ppm. MS (EI, 70 eV): m/z (%) = 214 (36) [M]+, 186 (10) [C12H11O2]+, 171 (4) [C13H14]+, 129 (12) [C10H10]+, 115 (11) [C9H8]+, 104 (21) [C8H7]+, 89 (29) [C7H6]+, 82 (100) [C5H6O]+, 54 (24) [C4H6]+.