RSS-Feed abonnieren
DOI: 10.1055/s-0031-1281644
© Georg Thieme Verlag KG Stuttgart · New York
Ultraschall systematisch anwenden und dosieren – geht das?
Auf einer Literaturrecherche basierender Vorschlag einer Dosierungsmatrix für therapeutischen kontinuierlichen UltraschallSystematically Applying and Dosing Ultrasound – Does it Work?Proposal for a Dosage Matrix for Continuous Therapeutic Ultrasound Based on a Literature ResearchPublikationsverlauf
eingereicht: 3.11.2010
angenommen: 29.4.2011
Publikationsdatum:
07. September 2011 (online)

Zusammenfassung
Hintergrund: Ultraschall kommt seit vielen Jahrzehnten ohne die Verwendung einer systematischen Dosierungsmatrix therapeutisch zur Anwendung. Bei der Wahl der Behandlungsparameter werden weder das Behandlungsziel noch die zu behandelnde Struktur berücksichtigt. Die Parameter lassen sich jedoch anhand der Ergebnisse von In-vitro-Untersuchungen schrittweise erarbeiten. Dabei können und sollten sie an das Zielgewebe und das jeweilige Therapieziel angepasst werden.
Ziel: Diese Arbeit stellt erstmals eine systematische Dosierungsmatrix für therapeutischen kontinuierlichen Ultraschall unter Berücksichtigung der Therapieziele und des Zielgewebes vor.
Methode: Die Ergebnisse einer Literaturrecherche zur systematischen Dosierung therapeutischen Ultraschalls führten zur Entwicklung einer Dosierungsmatrix.
Ergebnisse: Kontinuierlicher Ultraschall erwärmt Muskel- und Kollagengewebe bis zu einer Tiefe von 2,5 cm (3 MHz) bis 5 cm (1 MHz). Zur Anregung der Stoffwechselaktivität muss die lokale Temperatur um etwa 1° C, zur Schmerzlinderung und Durchblutungsverbesserung um 2 – 3° C und zur Verbesserung der Dehnbarkeit von Kollagen auf mindestens 4° C angehoben werden. Diese Temperaturen sind mindestens 5 Minuten auf diesem erhöhten Niveau zu halten, damit die gewünschte Effekte auftreten. Die vorgestellte Matrix ermöglicht die Berechnung der Behandlungsparameter unter Berücksichtigung des zu behandelnden Gewebes und des therapeutischen Ziels.
Schlussfolgerung: Therapeutischer Ultraschall lässt sich zielorientiert dosieren. Diese Matrix ist trotz ihrer Schwächen ein Instrument, das den Einsatz von Ultraschall auf einer wissenschaftlich fundierten Basis zielorientiert ermöglicht.
Abstract
Background: Ultrasound has been used therapeutically without the application of a systematic dosage matrix for many decades. Neither therapeutic intention nor the affected tissues are considered in determination of treatment parameters. These parameters can, however, be gleaned from in vitro research results. They can and should be adapted to the affected tissue and particular therapeutic purpose.
Objective: This article portrays for the first time a systematic dosage matrix for continuous therapeutic ultrasound considering therapeutic aims and affected tissues.
Method: Results of a literature research on systematic application of therapeutic ultrasound led to the development of a dosage matrix.
Results: Continuous therapeutic ultrasound heats muscle and collagen tissue as deep as 2.5 cm (3 MHz) to 5 cm (1 MHz). For metabolic stimulation local temperature should be raised by 1° C, for pain treatment or stimulation of blood circulation by 2 – 3° C and for improved collagen extensibility by at least 4° C. In order to produce these effects temperature should be kept on these higher levels for at least 5 minutes. The portrayed dosage matrix provides the calculation of dosage parameters in relation to therapeutic aims and the affected tissues.
Conclusion: Therapeutic ultrasound can be applied target-oriented. Despite its limitations this matrix is a tool which allows the target-oriented and science-based use of ultrasound.
Schlüsselwörter
therapeutischer Ultraschall - Dosierungsmatrix
Key words
therapeutic ultrasound - dosage matrix
Literatur
- 1
Artho P A, Thyne J G, Warring B P et al.
A calibration study of therapeutic ultrasound units.
Physical Therapy.
2002;
82
257-263
MissingFormLabel
- 2
Bishop S, Draper D O, Knight K L et al.
Human Tissue-Temperature Rise during Ultrasound Treatments with the Aquaflex Gel Pad.
J Athl Train.
2004;
39
126-131
MissingFormLabel
- 3 Bossert F P, Jenrich W, Vogedes K. Leitfaden Elektrotherapie. München: Urban & Fischer; 2006
MissingFormLabel
- 4 Bossert F P, Vogedes K. Elektrotherapie, Licht- und Strahlentherapie. Grundlagen für Physiotherapeuten und
Masseure. München: Urban & Fischer; 2007
MissingFormLabel
- 5
Cagnie B, Vinck E, Rimbaut S et al.
Phonophoresis versus topical application of Ketoprofen: comparison between tissue
and plasma levels.
Physical Therapy.
2003;
83
707-712
MissingFormLabel
- 6
Chan A K, Myrer J W, Measom G J et al.
Temperature changes in human patellar tendon in response to therapeutic ultrasound.
Journal of Athletic Training.
1998;
33
130-135
MissingFormLabel
- 7
Demmink J H, Helders P JM, Bobaek H et al.
The variation of heating depth with therapeutic ultrasound frequency in physiotherapy.
Ultrasound in Med & Biol.
2003;
29
113-118
MissingFormLabel
- 8
Draper D O, Sunderland S.
Examination of the law of Grotthus-Draper: Does ultrasound penetrate subcutaneous
fat in humans?.
Journal of Athletic Training.
1993;
28
246-250
MissingFormLabel
- 9
Draper D O, Ricard M D.
Rate of temperature decay in human muscle following 3 MHz ultrasound: the stretching
window revealed.
Journal of Athletic Training.
1995;
30
304-307
MissingFormLabel
- 10
Draper D O, Castel J C, Castel D.
Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound.
J Orthop Sports Phys Ther.
1995;
22
142-150
MissingFormLabel
- 11
Draper D O, Andersen C, Schulthies S S et al.
Immediate and residual changes in dorsiflexion range of motion using an ultrasound
heat and stretch routine.
Journal of Athletic Training.
1998;
33
141-144
MissingFormLabel
- 12
Draper D O, Edvalson C G, Knight K L et al.
Temperature increases in the human Achilles tendon during ultrasound treatments with
commercial ultrasound gel and full-thickness and half-thickness gel pads.
J Athl Train.
2010;
45
333-337
MissingFormLabel
- 13 Drury J C. Ultrasonic Flaw Detection for Technicians. Swansea: Silverwing; 2004
MissingFormLabel
- 14 Edel H. Fibel der Elektrodiagnostik und Elektrotherapie. Dresden: Steinkopf; 1977
MissingFormLabel
- 15
Gallo J A, Draper D O, Brody L T et al.
A comparison of human muscle temperature increase during 3-MHz continuous and pulsed
ultrasound with equivalent temporal average intensities.
J Orthop Sports Phys Ther.
2004;
34
395-401
MissingFormLabel
- 16
Garrett C L, Draper D O, Knight K L.
Heat distribution in the lower leg from pulsed short-wave diathermy and ultrasound
treatments.
Journal of Athletic Training.
2000;
35
50-55
MissingFormLabel
- 17
Harvey E N.
Biological aspects of ultrasonic waves, a general survey.
Biol Bull.
1930;
59
306-325
MissingFormLabel
- 18
Hayes B T, Merrick M A, Sandrey M A et al.
Three-MHz ultrasound heats deeper into the tissues than originally theorized.
Journal of Athletic Training.
2004;
39
230-234
MissingFormLabel
- 19
Hekkenberg R T, Reibold R, Zeqiri B.
Development of standard measurement methods for essential properties of ultrasound
therapy equipment.
Ultrasound in Med & Biol.
1994;
20
83-98
MissingFormLabel
- 20 Lehmann J F. Therapeutic heat and cold. Baltimore: Williams & Wilkins; 1990
MissingFormLabel
- 21
Mardimann S, Wessel J, Fisher B.
The effect of ultrasound on the mechanical pain threshold of healthy subjects.
Physiotherapy.
1995;
81
718-723
MissingFormLabel
- 22
Merrick M A, Mihalyov M R, Roethemeier J L et al.
A comparison of intramuscular temperatures during ultrasound treatments with coupling
gel or gel pads.
J Orthop Sports Phys Ther.
2002;
32
216-220
MissingFormLabel
- 23 Michlovitz S L, Nolan T P. Modalities for therapeutic intervention. Philadelphia: Davis; 2005
MissingFormLabel
- 24
Miller M G, Longoria J R, Cheatham C C et al.
Intramuscular temperature differences between the mid-point and peripheral radiating
area with ultrasound.
Journal of Sports Science and Medicine.
2008;
7
286-291
MissingFormLabel
- 25
Pye S, Milford C.
The performance of ultrasound physiotherapy machines in Lothian Region, Scotland,
1992.
Ultrasound in Med & Biol.
1994;
20
347-359
MissingFormLabel
- 26
Pye S.
Ultrasound Therapy Equipment. Does it Perform?.
Physiotherapy.
1996;
82
39-44
MissingFormLabel
- 27
Reher P, Elbeshir N L, Harvey W et al.
The stimulation of bone formation in vitro by therapeutic ultrasound.
Ultrasound in Med & Biol.
1997;
23
1251-1285
MissingFormLabel
- 28 Robertson V, Ward A, Low J. et al .Electrotherapy Explained. Oxford: Butterworth-Heinemann/Elsevier; 2006
MissingFormLabel
- 29
Rose S, Draper D O, Schulthies S S et al.
The stretching window part two: rate of thermal decay in deep muscle following 1-MHz
ultrasound.
Journal of Athletic Training.
1996;
31
139-143
MissingFormLabel
- 30
Rosim G C, Barbieri C H, Lanças F M et al.
Diclofenac phonophoresis in human volunteers.
Ultrasound Med Biol.
2005;
31
337-343
MissingFormLabel
- 31 Rostalski W, Hemrich N. Elektrotherapie. In: Hüter-Becker A, (Hrsg). Physikalische Therapie, Massage, Elektrotherapie und Lymphdrainage.. Stuttgart: Thieme; 2007
MissingFormLabel
- 32
Ter Haar G, Dyson M, Oakley E M.
The use of ultrasound by physiotherapists in Britain.
Ultrasound Med Biol.
1985;
13
659-663
MissingFormLabel
- 33
Warden S J, Fuchs R K, Kessler C K et al.
Ultrasound produced by a conventional therapeutic ultrasound unit accelerates fracture
repair.
Physical Therapy.
2006;
86
1118-1127
MissingFormLabel
- 34 Watson T. Electrotherapy. Evidence-based Practice. Edinburgh: Churchill Livingstone, Elsevier; 2008
MissingFormLabel
- 35 Wenk W. Elektrotherapie. Berlin: Springer; 2004
MissingFormLabel
- 36
Williams A R, McHale J, Bowditch M.
Effects of MHz ultrasound on electrical pain threshold perception in humans.
Ultrasound in Med & Biol.
1987;
13
249-258
MissingFormLabel
Pieter van Kerkhof
PT M.Sc. Phys.
Burggrabenstr. 25a
8266 Steckborn
Schweiz
eMail: pvankerkhof@yahoo.de