Abstract
Three new solution-processable tetrabutylanthradithiophene (TBADT)-based
organic semiconductors bearing two phenylethynyl, thiophen-2-ylethynyl,
and thieno[3,2-b ]thiophen-5-ylethynyl
substituents have been synthesized and their thermal, optical, and
electrochemical properties have been characterized. Preliminary
tests of these compounds via drop-casting for thin-film transistors
showed p-channel TFT transport with hole mobilities as high as 1.510-³ cm² /Vs
and with a current on/off ratio of 104 .
Key words
organic semiconductor - organic thin-film transistor - anthradithiophene - solution
process - pentacene
References and Notes
<A NAME="RW10711ST-1A">1a </A>
Arias AC.
MacKenzie JD.
McCulloch I.
Rivnay J.
Salleo A.
Chem. Rev.
2010,
110:
3
<A NAME="RW10711ST-1B">1b </A>
Di C A.
Liu Y.
Yungi Y.
Gui Z.
Zhu D.
Acc. Chem. Res.
2009,
42:
1573
<A NAME="RW10711ST-1C">1c </A>
Chabinyc M.
Loo Y.-L.
J. Macromol. Sci. Polym. Rev.
2006,
46:
1
<A NAME="RW10711ST-1D">1d </A>
Dodabalapur A.
Nature
(London)
2005,
434:
151
<A NAME="RW10711ST-1E">1e </A>
Sirringhaus H.
Adv.
Mater.
2005,
17:
2411
<A NAME="RW10711ST-2A">2a </A>
Gao X.
Di C.
Hu Y.
Yang X.
Fan H.
Zhang F.
Liu Y.
Li H.
Zhu D.
J. Am. Chem.
Soc.
2010,
132:
3697
<A NAME="RW10711ST-2B">2b </A>
Kim C.
Chen M.-C.
Chiang Y.-J.
Guo Y.-J.
Youn J.
Huang H.
Liang Y.-J.
Lin Y.-J.
Huang Y.-W.
Hu T.-S.
Lee G.-H.
Facchetti A.
Marks TJ.
Org. Electron.
2010,
11:
801
<A NAME="RW10711ST-2C">2c </A>
Pal BN.
Dhar BM.
See KC.
Katz HE.
Nat. Mater.
2010,
9:
279
<A NAME="RW10711ST-2D">2d </A>
Beverina L.
Salice P.
Eur. J. Org. Chem.
2010,
7:
1207
<A NAME="RW10711ST-2E">2e </A>
Yan H.
Chen Z.
Zheng Y.
Newman CE.
Quinn JR.
Dolz F.
Kastler M.
Facchetti A.
Nature (London)
2009,
457:
679
<A NAME="RW10711ST-2F">2f </A>
Cheng X.
Noh Y.-Y.
Wang J.
Tello M.
Frisch J.
Blum R.-P.
Vollmer A.
Rabe JP.
Koch N.
Sirringhaus H.
Adv.
Funct. Mater.
2009,
19:
2407
<A NAME="RW10711ST-2G">2g </A>
Reese C.
Roberts ME.
Parkin SR.
Bao Z.
Adv. Mater.
2009,
21:
3678
<A NAME="RW10711ST-2H">2h </A>
Kim C.
Facchetti A.
Marks TJ.
Science
2007,
318:
76
<A NAME="RW10711ST-3A">3a </A>
Park SK.
Mourey DA.
Han J.-I.
Anthony JE.
Jackson TN.
Org. Electron.
2009,
10:
486
<A NAME="RW10711ST-3B">3b </A>
Kelly TW.
Baude PF.
Gerlach C.
Ender DE.
Muyres D.
Hasse MA.
Vogel DE.
Theiss SD.
Chem.
Mater.
2004,
16:
4413
<A NAME="RW10711ST-3C">3c </A>
Payne MM.
Parkin SR.
Anthony
JE.
J. Am. Chem. Soc.
2005,
127:
8028
<A NAME="RW10711ST-3D">3d </A>
Gundlach
DJ.
Lin YY.
Jackson TN.
Nelson SF.
Appl.
Phys. Lett.
2002,
80:
2925
<A NAME="RW10711ST-3E">3e </A>
Meng H.
Bendikov M.
Mitchell G.
Helgeson R.
Wudl F.
Bao Z.
Siegrist T.
Kloc C.
Chen CH.
Adv.
Mater.
2003,
15:
1090
<A NAME="RW10711ST-4A">4a </A>
Laquindanum JG.
Katz HE.
Lovinger AJ.
J.
Am. Chem. Soc.
1998,
120:
664
<A NAME="RW10711ST-4B">4b </A>
Payne MM.
Odom SA.
Parkin SR.
Anthony JE.
Org.
Lett.
2004,
6:
3325
<A NAME="RW10711ST-4C">4c </A>
Jurchescu OD.
Subramanian S.
Kline RJ.
Hudson SD.
Anthony JE.
Jackson TN.
Gundlach DJ.
Chem. Mater.
2008,
20:
6733
<A NAME="RW10711ST-4D">4d </A>
Chen M.-C.
Kim C.
Chen
S.-Y.
Chiang Y.-J.
Chung M.-C.
Facchetti A.
Marks
TJ.
J. Mater. Chem.
2008,
18:
1029
<A NAME="RW10711ST-5A">5a </A>
Youn J.
Chen M.-C.
Liang Y.-J.
Huang H.
Ortiz
RP.
Kim C.
Stern C.
Hu T.-S.
Chen L.-H.
Yan J.-Y.
Facchetti A.
Marks TJ.
Chem.
Mater.
2010,
22:
5031
<A NAME="RW10711ST-5B">5b </A>
Mauldin CE.
Puntambekar K.
Murphy AR.
Liao F.
Subramanian V.
Frechet JMJ.
Delongchamp DM.
Fischer DA.
Toney MF.
Chem.
Mater.
2009,
21:
1927
<A NAME="RW10711ST-5C">5c </A>
Chen M.-C.
Chiang Y.-J.
Kim C.
Guo Y.-J.
Chen S.-Y.
Liang Y.-J.
Huang Y.-W.
Hu T.-S.
Lee G.-H.
Facchetti A.
Marks TJ.
Chem.
Commun.
2009,
1846
<A NAME="RW10711ST-5D">5d </A>
Takimiya K.
Kunugi Y.
Konda Y.
Ebata H.
Toyoshima Y.
Otsubo T.
J. Am. Chem. Soc.
2006,
128:
3044
<A NAME="RW10711ST-5E">5e </A>
Xiao K.
Liu Y.
Qi T.
Zhang W.
Wang F.
Gao J.
Qiu W.
Ma Y.
Cui G.
Chen S.
Zhan X.
Yu G.
Qin J.
Hu W.
Zhu D.
J. Am. Chem.
Soc.
2005,
127:
13281
<A NAME="RW10711ST-5F">5f </A>
Ando S.
Nishida J.
Tada H.
Inoue Y.
Tokito S.
Yamashita Y.
J. Am. Chem. Soc.
2005,
127:
5336
For example, the C-6/C-13
positions of pentacene are sensitive to oxygen in solution when
exposed to visible light in air, see:
<A NAME="RW10711ST-6A">6a </A>
Wolak MA.
Jang BB.
Palilis LC.
Kafafi ZH.
J.
Phys. Chem. B
2004,
108:
5492
<A NAME="RW10711ST-6B">6b </A>
Reddy AR.
Bendikov M.
Chem. Commun.
2006,
1179
<A NAME="RW10711ST-7A">7a </A>
Anthony JE.
Brooks JS.
Eaton DL.
Parkin SR.
J. Am. Chem. Soc.
2001,
123:
9482
<A NAME="RW10711ST-7B">7b </A>
Sheraw CD.
Jackson TN.
Eaton DL.
Anthony JE.
Adv.
Mater.
2003,
15:
2009
<A NAME="RW10711ST-7C">7c </A>
Li Y.
Wu Y.
Liu P.
Prostran Z.
Gardner S.
Ong BS.
Chem. Mater.
2007,
19:
418
<A NAME="RW10711ST-7D">7d </A>
Benard CP.
Geng Z.
Heuft MA.
VanCrey K.
Fallis AG.
J. Org. Chem.
2007,
72:
7229
<A NAME="RW10711ST-7E">7e </A>
Lehnherr D.
McDonald R.
Tykwinski RR.
Org.
Lett.
2008,
10:
4163
<A NAME="RW10711ST-8A">8a </A>
Payne MM.
Parkin SR.
Anthony JE.
Kuo C.-C.
Jackson TN.
J.
Am. Chem. Soc.
2005,
127:
4986
<A NAME="RW10711ST-8B">8b </A>
Subramanian S.
Park SK.
Parkin SR.
Podzorov V.
Jackson TN.
Anthony JE.
J. Am. Chem. Soc.
2008,
130:
2706
<A NAME="RW10711ST-9">9 </A>
Kim C.
Huang P.-Y.
Jhuang J.-W.
Chen M.-C.
Ho
J.-C.
Hu T.-S.
Yan J.-Y.
Chen L.-H.
Lee G.-H.
Facchetti A.
Marks TJ.
Org.
Electron.
2010,
11:
1363
<A NAME="RW10711ST-10">10 </A>
Anthony JE.
Chem.
Rev.
2006,
106:
5028
<A NAME="RW10711ST-11">11 </A>
Since three new TBADT derivatives
are very soluble in common solvents, no crystal structures were
obtained. Thus, the elucidation of interrelationships between molecular structure
and the characterization of organic thin-film transistors are not
available so far.
<A NAME="RW10711ST-12">12 </A>
Reinecke MG.
Adickes HW.
Pyun C.
J.
Org. Chem.
1971,
36:
2690
<A NAME="RW10711ST-13">13 </A>
Zhao C.
Zhang Y.
Ng M.-K.
J.
Org. Chem.
2007,
72:
6364
<A NAME="RW10711ST-14">14 </A>
Corey EJ.
Fuchs PL.
Tetrahedron Lett.
1972,
4831
<A NAME="RW10711ST-15">15 </A>
Beny JP.
Dhawan SN.
Kagan J.
Sundlass S.
J. Org. Chem.
1982,
11:
2201
<A NAME="RW10711ST-16">16 </A> The endotherm was not observed in
the second run of DSC measurement. After performing the second run
(samples were heated above the decomposition temperature), the residues
in the DSC cell were monitored by ¹ H NMR and were
found to be different from the starting ADT. In addition to the
color change, the solubility of these ADT (residues) was also dramatically
decreased. Since there was no weight loss from TGA, dimerization
of the ADT is suspected, see:
Coppo P.
Yeates SG.
Adv. Mater.
2005,
17:
3001
<A NAME="RW10711ST-17">17 </A>
Maliakal A.
Raghavachari K.
Katz HE.
Chandross E.
Siegrist T.
Chem.
Mater.
2004,
16:
4980
<A NAME="RW10711ST-18">18 </A> It has been reported that alkynyl
substitution lowers the LUMO energy for pentacene derivatives as
compared to that of unsubstituted pentacene, which hinders their photooxidation.
See:
Akhtaruzzaman M.
Kamata N.
Nishida J.
Ando S.
Tada H.
Tomura M.
Yamashita Y.
Chem. Commun.
2005,
3183 ;
see also ref. 7c
<A NAME="RW10711ST-19">19 </A>
Yamada H.
Yamashita Y.
Kikuchi M.
Watanabe H.
Okujima T.
Uno H.
Ogawa T.
Ohara K.
Ono N.
Chem. Eur. J.
2005,
11:
6212
<A NAME="RW10711ST-20">20 </A> Measured with a Pt working electrode
in an o -dichloro-benzene solution using
0.1 mol dm-³ Bu4 NPF6 as
the supporting electrolyte. See:
Naraso Nishida J.
Kumaki D.
Tokito S.
Yamashita Y.
J. Am.
Chem. Soc.
2006,
128:
9598
<A NAME="RW10711ST-21">21 </A> Similar trends are reported in:
Wang J.
Liu K.
Liu Y.-Y.
Song C.-L.
Shi Z.-F.
Peng J.-B.
Zhang H.-L.
Cao
X.-P.
Org.
Lett.
2009,
11:
2563
<A NAME="RW10711ST-22">22 </A>
The solubility of TBADT derivatives
was ca. 20 (for 3 ) to 40 (for 1 and 2 ) mg/mL
in CHCl3 .