Synlett 2011(15): 2272-2273  
DOI: 10.1055/s-0030-1261159
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Enol Acetates

Manjeet Kumar*
Natural Product Chemistry (Microbes), Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu and Kashmir, India
e-Mail: manjeetsharma.ia@gmail.com;
Further Information

Publication History

Publication Date:
12 August 2011 (online)

Introduction

Enol acetates have enjoyed unique importance as intermediates in organic synthesis with a wide range of applications. [¹] The enol acetates are mainly employed in the transesterification of alcohols to synthesise chiral alcohols and acetates in high enantiomeric excess catalyzed by biocatalysts, such as lipases, [²] as well as the catalysts, such as iodine, [³] Cp2Sm(thf)2, [4] diethylzinc, [5] etc. They also find applications in the synthesis of biologically active intermediates like 1-acetyladamantane, [6] used as the starting material in the efficient preparation of the anti-influenza drug rimanadine and natural products, such as sapon­aceolides, [7] briarellin J, [8] etc.

Enol acetates are commercially accessible. Acetates of cyclic ketones can be easily prepared using perchloric acid and acetic anhydride. [9] Isopropenyl acetate is prepared on commercial scale by a sulfuric acid catalyzed reaction of acetone and ketene. [¹0] Whereas, the vinyl ester can be obtained by the reaction of ethylene and acetic acid with oxygen in the presence of palladium catalyst. [¹¹] Besides, chiral enol acetates have also been synthesized from racemic enol acetates or ketones through multistep reactions catalyzed by lipase and a ruthenium complex. [¹²]

    References

  • 1 Hart H. Rappoport Z. Biali SE. In The Chemistry of Enols   Rappoport Z. Wiley; Chichester: 1990. 
  • 2a Nascimento MG. Zanotto SP. Melegari SP. Fernandes L. Sa MM. Tetrahedron: Asymmetry  2003,  14:  3111 
  • 2b Lozano P. Piamtongkam R. Kohns K. Diego TD. Vaultierb M. Iborra JL. Green Chem.  2007,  9:  780 
  • 3 Bosco JWJ. Agrahari A. Saikia AK. Tetrahedron Lett.  2006,  47:  4065 
  • 4 Yumi K. Akiko F. Yasushi N. Satoshi S. Yasutaka I.
    J. Org. Chem.  1999,  64:  4214 
  • 5 Shirae Y. Mino T. Hasegawa T. Sakamoto M. Fujita T. Tetrahedron Lett.  2005,  46:  5877 
  • 6 Khusnutdinov RI. Shchadneva NA. Mukhametshina LF. Russ. J. Org. Chem.  2010,  46:  820 
  • 7 Trost BM.  Corte JR.  Gudiksen MS. Angew. Chem. Int. Ed.  1999,  38:  3662 
  • 8 Crimmins MT. Mans MC. Rodriguez AD. Org. Lett.  2010,  12:  5028 
  • 9 Liston AJ. Howarth M. J. Org. Chem.  1967,  32:  1034 
  • 10 Hagemeyer HJ. Hull DC. Ind. Eng. Chem.  1949,  41:  2920 
  • 11 Han YF. Kumar D. Sivadinarayana C. Goodman DW. J. Catal.   2004,  224:  60 
  • 12 Jung HM. Koh JH. Kim MJ. Park J. Org. Lett.  2000,  2:  409 
  • 13 Kumar M. Shah BA. Taneja SC. Adv. Synth. Catal.  2011,  353:  1207 
  • 14 Mukherjee D. Shah BA. Gupta P. Taneja SC. J. Org. Chem.  2007,  72:  8965 
  • 15a Ghanem A. Enein HYA. Chirality  2004,  17:  1 
  • 15b Kim KW. Song B. Choi MY. Kim MJ. Org. Lett.  2001,  3:  1507 
  • 16 Thomas PJ. Axtell AT. Klosin J. Peng W. Rand CL. Clark TP. Landis CR. Abboud KA. Org. Lett.  2007,  9:  2665 
  • 17a Huerta FF. Minidis ABE. Bäckvall J.-E. Chem. Soc. Rev.  2001,  30:  321 
  • 17b Pamies O. Bäckvall J.-E. Chem. Rev.  2003,  103:  3247 
  • 17c Matute BM. Edin M. Bogar K. Kaynak FB. Bäckvall JE. J. Am. Chem. Soc.  2005,  127:  8817 
  • 18 Jiao Y. Cao C. Zhou Z. Org. Lett.  2011,  13:  180 
  • 19 Lin MH. Rajanbabu TV. Org. Lett.  2000,  2:  997 
  • 20 Mastral MF. Feringa BL. J. Am. Chem. Soc.  2010,  132:  13152