Synlett 2011(14): 2102-2103  
DOI: 10.1055/s-0030-1260971
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

1,1,3,3-Tetramethyldisiloxane

Jia Deng*
The College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050016, P. R. of China
e-Mail: 176298246@163.com;
Further Information

Publication History

Publication Date:
21 July 2011 (online)

Introduction

1,1,3,3-Tetramethyldisiloxane (TMDS) is a hydrosiloxane derivative and has been used in organic synthesis as a mild reducing agent and intermediate for the preparation of organopolysiloxanes. It is a rather cheap, little hazardous, safe, volatile liquid boiling at 71 ˚C and is stable towards air and moisture. [¹] It has been used as a reducing agent for the direct synthesis of alkyl halides from aldehydes [²] and for the synthesis of alkyl halides from epoxides. [³] It was also found to be a mild donor of hydride for selective semihydrogenation of acetylenes to olefins, [4] it is used for the reduction of aryl chlorides to the corresponding arenes, [5] the reduction of unsymmetrical secondary phosphine oxides to secondary phosphine, [6] the reductive cleavage of inert C-O bonds, [7] and the preparation of aldenamines from carboxamides. [8] The enantio­selective reductive Michael cyclization of substrates containing two α,β-unsaturated carbonyl moieties has been achieved by the use of a combination of TMDS and chiral copper-bisphosphine complexes. [9] Reduction and reductive N-alkylation of secondary amides to secondary amines with a ruthenium complex/TMDS system are readily accomplished. [¹0]

1,1,3,3-Tetramethyldisiloxane is a by-product of the silicon industry and the lowest-molecular-weight commercially available hydrosiloxane derivative now. It can be readily prepared by reduction of 1,1,3,3-tetramethyl-1,3-dichloro-1,3-disiloxane with a metal hydride such as lithium aluminum hydride, sodium aluminum hydride, lithium borohydride, lithium hydride or sodium hydride in tetrahydrofuran.

Scheme 1

    References

  • 1 Pehlivan L. Metay E. Laval S. Dayoub W. Demonchaux P. Mignani G. Lemaire M. Tetrahedron Lett.  2010,  51:  1939 
  • 2 Aizpurua JM. Palomo C. Tetrahedron Lett.  1984,  25:  1103 
  • 3 Aizpurua JM. Palomo C. Tetrahedron Lett.  1984,  25:  3123 
  • 4 Trost BM. Braslau R. Tetrahedron Lett.  1989,  30:  4657 
  • 5 Lipshutz BH. Tomioka T. Sato K. Synlett  2001,  970 
  • 6 Petit C. Favre-Réguillon A. Mignani G. Lemaire M. Green Chem.  2010,  12:  326 
  • 7 Álvarez-Bercedo P. Martin R. J. Am. Chem. Soc.  2010,  132:  17352 
  • 8 Motoyama Y. Aoki M. Takaoka N. Aoto R. Nagashima H. Chem. Commun.  2009,  1574 
  • 9 Oswald CL. Peterson JA. Lam HW. Org. Lett.  2009,  11:  4504 
  • 10 Hanada S. Ishida T. Motoyama Y. Nagashima H.
    J. Org. Chem.  2007,  72:  7551 
  • 11 Pehlivan L. Metay E. Laval S. Dayoub W. Demonchaux P. Mignani G. Lemaire M. Tetrahedron  2011,  67:  1971 
  • 12 Laval S. Dayoub W. Favre-Reguillon A. Berthod M. Demonchaux P. Mignani G. Lemaire M. Tetrahedron Lett.  2009,  50:  7005 
  • 13 Laval S. Dayoub W. Favre-Reguillon A. Demonchaux P. Mignani G. Lemaire M. Tetrahedron Lett.  2010,  51:  2092 
  • 14 Shi Y. Dayoub W. Chen GR. Lemaire M. Tetrahedron Lett.  2011,  52:  1281 
  • 15 Berthod M. Favre-Reguillon A. Mohamad J. Mignani G. Docherty G. Lemaire M. Synlett  2007,  1545 
  • 16 Petit C. Favre-Reguillon A. Albela B. Bonneviot L. Mignani G. Lemaire M. Organometallics  2009,  28:  637 
  • 17 Hanada S. Tsutsumi E. Motoyama Y. Nagashima H.
    J. Am. Chem. Soc.  2009,  131:  15032 
  • 18 Sunada Y. Kawakami H. Imaoka T. Motoyama Y. Nagashima H. Angew. Chem. Int. Ed.  2009,  48:  9511 
  • 19 Harris JR. Haynes MT. Thomas AM. Woerpel KA. J. Org. Chem.  2010,  75:  5083