Synlett 2011(14): 2100-2101  
DOI: 10.1055/s-0030-1260963
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Phenylsilane

Yong-Xiao Li*
The College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050016, P. R. of China
e-Mail: yongxiao0325@sina.com;
Further Information

Publication History

Publication Date:
21 July 2011 (online)

Introduction

Phenylsilane (PhSiH3) is an organosilane and has been extensively used in organic synthesis as a mild and environmentally benign reducing agent. It is a clear, colorless, volatile liquid which boils at 120 ˚C. [¹] When heated to decomposition it emits acrid smoke and irritating vapors. It reacts violently with water, so the preparation of phenylsilane must be performed in a reaction vessel connected with a vacuum system by a standard ground glass joint. It has been used for the hydrosilylation reduction of ketones and aldehydes to give the corresponding alcohols. [²] It was also found to be an efficient reagent for selective reduction of quinoline to dihydroquinoline, [³] reductive Michael cyclization, [4] and reductive aldol reaction. [5] The reductive coupling of aldimines has been achieved by the use of a combination of PhSiH3 and titanium isopropoxide [Ti(Oi-Pr)4]. [6] Reductions of organic halides to dehalogenated ­alkanes with the In(OAc)3-PhSiH3 system are readily accomplished. [7] It can also act as an in situ carboxylic acid activating agent to prepare carboxamides and peptides from carboxylic acids and amines. [8]

Phenylsilane is commercially available now. It can be readily prepared by reduction of phenyltrichlorosilane with lithium aluminum hydride in ether. [9]

Scheme 1

    References

  • 1 Nebergall WH. J. Am. Chem. Soc.  1950,  72:  4702 
  • 2a Addis D. Zhou SL. Das S. Junge K. Kosslick H. Harloff J. Lund H. Schulz A. Beller M. Chem. Asian J.  2010,  5:  2341 
  • 2b Truong TV. Kastl EA. Du GD. Tetrahedron Lett.  2011,  52:  1670 
  • 2c Mostefai N. Sirol S. Courmarcel J. Riant O. Synthesis  2007,  1265 
  • 3 Voutchkova AM. Gnanamgari D. Jakobsche CE. Butler C. Miller SJ. Parr J. Crabtree RH.
    J. Organomet. Chem.  2008,  693:  1815 
  • 4 Oswald CL. Peterson JA. Lam HW. Org. Lett.  2009,  11:  4504 
  • 5 Kato M. Oki H. Ogata K. Fukuzawa S. Synlett  2009,  1299 
  • 6 Kumar A. Samuelson AG. Eur. J. Org. Chem.  2011,  951 
  • 7 Miura K. Tomita M. Yamada Y. Hosomi A. J. Org. Chem.  2007,  72:  787 
  • 8 Ruan ZM. Lawrence RM. Cooper CB. Tetrahedron Lett.  2006,  47:  7649 
  • 9 Finholt AE. Bond AC. Wilzbach KE. Schlesinger HI. J. Am. Chem. Soc.  1947,  69:  2692 
  • 10 Matsuoka H. Kondo K. Chin. Chem. Lett.  2010,  21:  1314 
  • 11 Sousa SCA. Fernandes AC. Adv. Synth. Catal.  2010,  352:  2218 
  • 12 Smith CA. Cross LE. Hughes K. Davis RE. Judd DB. Merritt AT. Tetrahedron Lett.  2009,  50:  4906 
  • 13 Cabrita I. Sousa SCA. Fernandes AC. Tetrahedron Lett.  2010,  51:  6132 
  • 14 Maddani MR. Moorthy SK. Prabhu KR. Tetrahedron  2010,  66:  329 
  • 15 Miura K. Yamada Y. Tomita M. Hosomi A. Synlett  2004,  1985 
  • 16 Zhou S. Junge K. Addis D. Das S. Beller M. Org. Lett.  2009,  11:  2461 
  • 17 Sugimoto O. Sugiyama M. Tanji K. Heterocycles  2010,  80:  601 
  • 18 Baek JY. Lee SJ. Han BH. J. Korean Chem. Soc.  2004,  48:  220