Synlett 2011(13): 1923-1929  
DOI: 10.1055/s-0030-1260957
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Room-Temperature Multicomponent Synthesis of 3,4-Dihydroquinoxalin-2-amine Derivatives Using Highly Ordered 3D Nanoporous Aluminosilicate Catalyst

D. Shobhaa,b, M. Adharvana Chari*b, L.-C. Sangb, Salem S. Aldeyabc, K. Mukkantia, A. Vinu*b
a Centre for Chemical Sciences & Technology, Institute of Science & Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500085, Andhra Pradesh, India
b International Center for Materials Nanoarchitectonics,WPI Research Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
Fax: +81(29)8604706; e-Mail: vinu.ajayan@nims.go.jp;
c Department of Chemistry, Petrochemicals Research Chair, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
Further Information

Publication History

Received 10 April 2011
Publication Date:
14 July 2011 (online)

Abstract

Here we demonstrate on the synthesis of multifunctional 3,4-dihydroquinoxalin-2-amine derivatives through a three-component condensation of substituted o-phenylenediamines (OPDA), diverse ketones, and various isocyanides in the presence of AlKIT-5 catalyst which was found to be highly active and selective, affording excellent yields (85-98%) in ethanol at room temperature (2-4 h).

    References and Notes

  • For reviews, see:
  • 1a Kappe CO. Tetrahedron  1993,  49:  6937 
  • 1b Kappe CO. In Multicomponent Reactions   Zhu J. Bienaymé H. Wiley-VCH; Weinheim: 2005.  p.95 
  • For reviews on isocyanide-based multicomponent reactions, see:
  • 2a Dömling A. Ugi I. Angew. Chem. Int. Ed.  2000,  39:  3168 
  • 2b Dömling A. Chem. Rev.  2006,  106:  17 
  • 2c Nair V. Rajesh C. Vinod AU. Bindu S. Sreekanth AR. Mathen JS. Balagopal L. Acc. Chem. Res.  2003,  36:  899 
  • For some recently reported examples with isocyanide, see:
  • 3a Silva RAD. Santra S. Andreana PR. Org. Lett.  2008,  10:  4541 
  • 3b Fujiwara S.-I. Asanuma Y. Shin-Ike T. Kambe N. J. Org. Chem.  2007,  72:  8087 
  • 3c Shaabani A. Rezayan AH. Ghasemi S. Sarvary A. Tetrahedron Lett.  2009,  50:  1456 
  • 3d Heravi MM. Baghernejad B. Oskooie HA. Tetrahedron Lett.  2009,  50:  767 
  • 4a Shaabani A. Maleki A. Moghimi-Rad J. J. Org. Chem.  2007,  72:  6309 
  • 4b Shaabani A. Soleimani E. Maleki A. Tetrahedron Lett.  2006,  47:  3031 
  • 4c Shaabani A. Teimouri MB. Arab Ameri S. Tetrahedron Lett.  2004,  45:  8409 
  • 5 Porter AEA. In Comprehensive Heterocyclic Chemistry   Vol. 3:  Katritzky AR. Rees CW. Pergamon Press; New York: 1984.  p.191 
  • 6 Cheeseman GWH. Cookson RF. In The Chemistry of Heterocyclic Compounds   2nd ed.:  Weissberger A. Taylor EC. Wiley; New York: 1979.  p.1 
  • 7 Gupta D. Ghosh NN. Chandra R. Bioorg. Med. Chem. Lett.  2005,  15:  1019 
  • 8 Rosner M. Billhardt-Troughton UM. Kirsh R. Kleim JP. Meichsner C. Riess G. Winkler I.   , 
  • 9 More SV. Sastry MNV. Wang C.-C. Yao C.-F. Tetrahedron Lett.  2005,  46:  6345 
  • 10a Heravi MM. Keivanlo A. Rahimzadeh M. Bakavoli M. Ghassemzadeh M. Tetrahedron Lett.  2004,  45:  5747 
  • 10b Heravi MM. Keivanlo A. Rahimzadeh M. Bakavoli M. Ghassemzadeh M. Tetrahedron Lett.  2005,  46:  1607 
  • 10c Heravi MM. Derikvand F. J. Mol. Catal. A.  2005,  242:  173 
  • 10d Heravi MM. Bakhtiari K. Bamoharram FF. Catal. Commun.  2006,  7:  373 
  • 11 Shaabani A. Maleki A. Mofakham H. Khavasi HR.
    J. Comb. Chem.  2008,  10:  323 
  • 12a Kolla SR. Lee YR. Tetrahedron  2010,  66:  8938 
  • 12b Li J. Liu Y. Li C. Jia X. Tetrahedron Lett.  2009,  50:  6502 
  • 13 Heravi MM. Maryam KB. Tehrani H. Javadi NM. Oskooie HA. ARKIVOC  2006,  (xvi):  16 
  • 14 Chari MA. Syamasundar K. Catal. Commun.  2005,  6:  67 
  • 15 Srinivasu P. Alam S. Balasubramanian VV. Velmathi S. Sawant DP. Bohlmann W. Mirajkar SP. Ariga K. Halligudi SB. Vinu A. Adv. Funct. Mater.  2008,  18:  640 
  • 16 Chakravarti R. Kalita P. Selvan ST. Oveisi H. Balasubramanian VV. Kantam ML. Vinu A. Green Chem.  2010,  12:  49 
  • 17 Shobha D. Chari MA. Mano A. Selvan ST. Mukkanti K. Vinu A. Tetrahedron  2009,  65:  10608 
  • 18 Vinu A. Kalita P. Balasubramanian VV. Oveisi H. Tamil Selvan T. Mano A. Chari MA. Subba Reddy BV. Tetrahedron Lett.  2009,  50:  7132 
  • 19 Chakravarti R. Kalita P. Pal RR. Halligudi SB. Lakshmi Kantam M. Vinu A. Microporous Mesoporous Mater.  2009,  123:  338 
  • 20 Balasubramanian VV. Srinivasu P. Anand C. Pal RR. Ariga K. Velmathi S. Alam S. Vinu A. Microporous Mesoporous Mater.  2008,  114:  303 
  • 21 Shobha D. Chari MA. Tamil Selvan S. Oveisi H. Mano A. Mukkanti K. Vinu A. Microporous Mesoporous Mater.  2010,  129:  112 
  • 22 Adharvana Chari M. Karthikeyan G. Pandurangan A. Naidu TS. Sathyaseelan B. Javaid Zaidi SM. Vinu A. Tetrahedron Lett.  2010,  51:  2629 
23

Experimental Procedure All chemicals and solvents were obtained from Aldrich and used without further purification. The ¹H NMR spectra of samples were recorded on a JEOL 300-MHz NMR spectrometer using TMS as an internal standard in DMSO-d 6. Mass spectra were recorded on a MALDI-MS. FT-IR spectra of all the final products were recorded on a Perkin Elmer 100 instrument by averaging 50 scans with a resolution of 2 cm measuring in absorbance mode by using the KBr self-supported pellet technique. The melting points of the novel products were determined by using melting point apparatus.
Typical Procedure for the Synthesis of 3,4-Dihydroquinoxalin-2-amine Derivatives
To a solution of diamine (1 mmol), ketone (1 mmol), and isocyanide (1 mmol) in EtOH (3 mL) was added AlKIT-5 (100 mg). The resulting mixture was stirred for 2-4 h at r.t. After completion of the reaction, as indicated by TLC (EtOAc-n-hexane, 2:1). The catalyst was filtered off, and the product in filtrate was precipitated by addition of cold H2O (10 mL). The residue was crystallized from EtOH to give 4a-p as crystals. All products were characterized by spectral (IR, NMR and MS) data and also by the melting points of the samples. The spectral data of all novel compounds are given below.
Compound 4a: white solid; mp 218-220 ˚C. IR (KBr):
νmax = 3293, 2935, 2861, 1642, 1619, 1508, 1455, 1211, 1178, 750, 681 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 0.88 (t, J = 3.0 Hz, 3 H, CH2CH3), 1.35 (q, J = 2.8 Hz, 2 H, CH2), 1.49 (s, 3 H, CH3), 1.11-2.34 (m, 10 H, 2 × 5 CH2 of cyclohexyl), 3.99 (br s, 1 H, CHNH), 6.31-6.41 (br s, 1 H, NH), 6.70-6.74 (br s, 1 H, NH), 6.78-7.65 (m, 4 H, ArH) ppm. MALDI-MS: m/z [M+] = 271. Anal. Calcd for C17H25N3: C, 75.23; H,9.28; N,15.48. Found: C, 75.20; H, 9.24; N, 15.45.
Compound 4b: off white solid; mp 230-232 ˚C. IR (KBr): νmax = 3351, 2935, 2851, 1622, 1541, 1508, 1448, 1314, 1190, 738, 685 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 0.98-1.95 (m, 20 H, 2 × 5 CH2 of cyclohexyl), 3.86 (br s, 1 H, CHNH), 6.69 (br s, 1 H, NH), 6.77 (br s, 1 H, NH), 7.02-7.46 (m, 4 H, ArH) ppm. MALDI-MS: m/z [M+] = 297. Anal. Calcd for C19H27N3: C, 76.72; H, 9.15; N, 14.13. Found: C, 76.69; H, 9.10, N, 14.10.
Compound 4c: pale yellow solid; mp 305-307 ˚C. IR (KBr): νmax = 3300, 3252, 2938, 2863, 1649, 1621, 1512, 1462, 1213, 1179, 752, 683 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 1.06-2.33 (m, 10 H, 2 × 5 CH2 of cyclohexyl), 1.89 (s, 3 H, CH3), 4.05 (br s, 1 H, CHNH), 6.64-6.71 (br s, 1 H, NH), 6.95-6.99 (br s, 1 H, NH), 7.09-7.67 (m, 9 H, ArH) ppm. MALDI-MS: m/z [M+] = 319. Anal. Calcd for C21H25N3: C, 78.96; H, 7.89; N, 13.15. Found: C, 78.93; H, 7.86; N, 13.10.
Compound 4d: pale yellow solid; mp 240 ˚C. IR (KBr):
νmax = 3249, 2925, 2864, 1647, 1620, 1508, 1397, 1451, 1187, 752, 679 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 1.01-2.28 (m, 10 H, 2 × 5 CH2 of cyclohexyl), 1.39 (s, 3 H, CH3), 3.90 (br s, 1 H, CHNH), 6.52 (br s, 1 H, NH), 6.74 (br s, 1 H, NH), 6.77-7.51 (m, 8 H, ArH) ppm. MALDI-MS: m/z [M+] = 334. Anal. Calcd for C21H26N4: C, 75.41; H, 7.84; N, 16.75. Found: C, 75.37; H, 7.80; N, 16.70.
Compound 4e: white solid; mp 262 ˚C. IR (KBr): νmax = 3253, 2937, 2864, 1642, 1620, 1509, 1455, 1202, 1190, 753, 680 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 1.00-2.29 (m, 10 H, 2 × 5 CH2 of cyclohexyl), 1.39 (s, 3 H, CH3), 3.97 (br s, 1 H, CHNH), 6.53 (br s, 1 H, NH), 6.77 (br s, 1 H, NH), 6.79-7.51 (m, 8 H, ArH) ppm. MALDI-MS: m/z [M+] = 398. Anal. Calcd for C21H24BrN3: C, 63.32; H, 6.07; N, 10.55. Found: C, 63.28; H, 6.01; N, 10.50.
Compound 4f: white solid; mp 202 ˚C. IR (KBr): νmax = 3249, 2937, 2858, 1644, 1622, 1508, 1452, 1397, 1204, 1184, 754, 680 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 1.05-2.31 (m, 10 H, 2 × 5 CH2 of cyclohexyl) 1.37 (s, 3 H, CH3), 1.38-1.50 (s, 3 H, CH3 of tolyl), 3.89 (br s, 1 H, CHNH), 6.33-6.41 (br s, 1 H, NH), 6.69-6.73 (br s, 1 H, NH), 6.73-7.57 (m, 8 H, ArH) ppm. MALDI-MS: m/z [M+] = 333. Anal. Calcd for C22H27N3: C, 79.24; H, 8.16; N, 12.60. Found: C, 79.20; H, 8.12; N, 12.56.
Compound 4g: white solid; mp 250-252 ˚C. IR (KBr):
νmax = 3252, 2925, 2880, 1648, 1622, 1508, 1451, 1209, 1188, 753, 679 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 1.10-2.29 (m, 10 H, 2 × 5 CH2 of cyclohexyl), 3.90 (br s, 1 H, CHNH), 6.50-6.58 (br s, 1 H, NH), 6.74-6.77 (br s, 1 H, NH), 6.78-7.56 (m, 13 H, ArH) ppm. MALDI-MS: m/z [M+] = 396. Anal. Calcd for C26H28N4: C, 78.75; H, 7.12; N, 14.13. Found: C, 78.70, H, 7.09; N, 14.10.
Compound 4h: off white solid; mp 160-162 ˚C. IR (KBr): νmax = 3276, 2947, 2780, 1656, 1624, 1490, 1455, 1211, 1192, 815, 682 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 1.92 (s, 3 H, CH3), 2.32 (s, 2 H, CH2 of benzyl), 4.03 (br s, 1 H, NH), 4.93 (br s, 1 H, NH), 6.97-7.83 (m, 14 H, ArH) ppm. MALDI-MS: m/z [M+] = 327. Anal. Calcd for C22H21N3: C, 80.70; H, 6.46; N, 12.38. Found: C, 80.66, H, 6.40, N, 12. 80.
Compound 4i: pale yellow solid; mp 140-142 ˚C. IR (KBr): νmax = 3250, 2996, 2850, 1654, 1624, 1489, 1450, 1190, 1160, 815, 680 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 1.17 (s, 3 H, CH3), 2.34 (s, 3 H, CH3 of tolyl), 3.56-3.61 (m, 2 H, CH2 of benzyl), 4.03 (br s, 1 H, NH), 4.90 (br s, 1 H, NH), 7.12-7.79 (m, 13 H, ArH) ppm. MALDI-MS: m/z [M+] = 342. Anal. Calcd for C23H23N3: C, 80.90; H, 6.79; N, 12.31. Found: C, 80.86; H, 6.70; N, 12.28.
Compound 4j: light grey solid; mp 190-192 ˚C. IR (KBr): νmax = 3261, 2933, 2860, 1640, 1620, 1502, 1455, 1200, 1191, 815, 682 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 0.87 (t, J = 3.0 Hz, 3 H, CH2CH3), 1.22 (q, J = 2.8 Hz, 2 H, CH2), 1.50 (s, 3 H, CH3), 1.30-2.33 (m, 10 H, 2 × 5 CH2 of cyclohexyl), 3.93-4.04 (br s, 1 H, CHNH), 6.45-6.56 (br s, 1 H, NH), 6.72-6.84 (br s, 1 H, NH), 6.89-7.65 (m, 3 H, Ar-H) ppm. MALDI-MS: m/z [M+] = 305. Anal. Calcd for C17H24ClN3: C, 66.76; H, 7.91; N, 13.74. Found: C, 66.71; H, 7.88, N, 13.70.¹¹ Compound 4k: brown solid; mp 148-150 ˚C. IR (KBr):
νmax = 3338, 2929, 2890, 1636, 1619, 1500, 1450, 1198, 1186, 815, 684 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 0.81-2.32 (m, 20 H, 2 × 5 CH2 of cyclohexyl), 3.86 (br s, 1 H, CHNH), 6.69-6.76 (br s, 1 H, NH), 6.76-6.85 (br s, 1 H, NH), 7.01-7.52 (m, 3 H, ArH) ppm. MALDI-MS: m/z [M+] = 331. Anal. Calcd for C19H26ClN3: C, 68.76; H, 7.90; N,12.66. Found: C, 68.69; H, 7.87; N, 12.64.¹¹
Compound 4l: pale pink solid; mp 245-247 ˚C. IR (KBr): νmax = 3259, 2938, 2859, 1644, 1619, 1501, 1456, 1212, 1182, 816, 680 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 1.04-2.28 (m, 10 H, 2 × 5 CH2 of cyclohexyl), 1.40 (s, 3 H, CH3), 3.92-4.19 (br s, 1 H, CHNH), 6.70-6.88 (br s, 1 H, NH), 6.88-7.07 (br s, 1 H, NH), 7.08-7.88 (m, 8 H, ArH) ppm. MALDI-MS: m/z [M+] = 353. Anal. Calcd for C21H24ClN3: C, 71.27; H, 6.84; N, 11.87. Found: C, 71.23; H, 6.80; N, 11.80.¹¹
Compound 4m: pale pink solid; mp 258-260 ˚C. IR (KBr): νmax = 3273, 2923, 2851, 1646, 1625, 1513, 1458, 1401, 1207, 1188, 810, 680 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 1.04-2.28 (m, 10 H, 2 × 5 CH2 of cyclohexyl), 1.40 (s, 3 H, CH3), 3.83-3.94 (br s, 1 H, CHNH), 6.69-6.74 (br s, 1 H, NH), 6.75-6.78 (br s, 1 H, NH), 6.78-7.50 (m, 7 H, ArH) ppm. MALDI-MS: m/z [M+] = 369. Anal. Calcd for C21H25ClN4: C, 68.37; H, 6.83; N, 15.19. Found: C, 68.31; H, 6.80; N, 15.12.¹¹
Compound 4n: violet solid; mp 218-220 ˚C. IR (KBr):
νmax = 3270, 2938, 2864, 1648, 1620, 1503, 1456, 1205, 1185, 815, 680 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 1.02-2.27 (m, 10 H, 2 × 5 CH2 of cyclohexyl), 1.37 (s, 3 H, CH3), 4.01 (br s, 1 H, CHNH), 6.68-6.74 (br s, 1 H, NH), 6.75-6.81 (br s, 1 H, NH), 6.89-7.57 (m, 7 H, ArH) ppm. MALDI-MS: m/z [M+] = 432. Anal. Calcd for C21H23BrClN3: C, 58.28; H, 5.36; N, 9.71. Found: C, 58.22; H, 5.28; N, 9.65.¹¹
Compound 4o: brown solid; mp 235-237 ˚C. IR (KBr):
νmax = 3272, 2924, 2853, 1647, 1612, 1513, 1457, 1208, 1188, 810, 680 cm. ¹H NMR (300 MHz, DMSO-d 6): δ = 0.98-2.20 (m, 10 H, 2 × 5 CH2 of cyclohexyl), 1.37 (s, 3 H, CH3), 2.26 (s, 3 H, CH3 of tolyl), 4.00 (br s, 1 H, CHNH), 6.58-6.74 (br s, 1 H, NH), 6.74-6.77 (br s, 1 H, NH), 6.77-7.49 (m, 7 H, Ar) ppm. MALDI-MS: m/z [M+] = 367. Anal. Calcd for C22H26ClN3: C, 71.82; H, 7.12; N, 11.42. Found: C, 71.78; H, 7.08; N, 11.36.¹¹
Compound 4p: pale brown solid; mp 258-260 ˚C. IR (KBr): νmax = 3275, 2925, 2864, 1639, 1629, 1501, 1458, 1401, 1200, 1186, 810, 679 cm. ¹H NMR (DMSO-d 6): δ = 1.14-2.29 (m, 10 H, 2 × 5 CH2 of cyclohexyl), 3.87 (br s, 1 H, CHNH), 6.71-6.74 (br s, 1 H, NH), 6.75-6.78 (br s, 1 H, NH), 6.79-7.52 (m, 12 H, ArH) ppm. MALDI-MS: m/z = 430. Anal. Calcd for C26H27ClN4: C, 72.46; H, 6.31; N, 13.00. Found: C, 72.40, H, 6.29, N, 13.05.¹¹