References and Notes
<A NAME="RB05211ST-1">1</A>
Transition
Metals for Organic Synthesis
2nd ed.:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
2004.
For selected representative reviews,
see:
<A NAME="RB05211ST-2A">2a</A>
Hesp KD.
Stradiotto M.
ChemCatChem
2010,
2:
1192
<A NAME="RB05211ST-2B">2b</A>
Müller TE.
Hultzsch KC.
Yus M.
Foubelo F.
Tada M.
Chem. Rev.
2008,
108:
3795
<A NAME="RB05211ST-2C">2c</A>
Brunet JJ.
Chu NC.
Rodriguez-Zubiri M.
Eur. J. Org. Chem.
2007,
4711
<A NAME="RB05211ST-2D">2d</A>
Hultzsch KC.
Adv. Synth. Catal.
2005,
347:
367
<A NAME="RB05211ST-2E">2e</A>
Alonso F.
Beletskaya IP.
Yus M.
Chem.
Rev.
2004,
104:
3079
<A NAME="RB05211ST-2F">2f</A>
Hultzsch KC.
Hampel F.
Wagner T.
Organometallics
2004,
23:
2601
<A NAME="RB05211ST-2G">2g</A>
Roesky PW.
Müller TE.
Angew.
Chem. Int. Ed.
2003,
42:
2708
<A NAME="RB05211ST-2H">2h</A>
Müller
TE.
Beller M.
Chem.
Rev.
1998,
98:
675
For selected recent examples, see:
<A NAME="RB05211ST-3A">3a</A>
Reznichenko AL.
Nguyen HN.
Hultzsch KC.
Angew. Chem. Int. Ed.
2010,
49:
8984
<A NAME="RB05211ST-3B">3b</A>
Julian LD.
Hartwig JF.
J.
Am. Chem. Soc.
2010,
132:
13813
<A NAME="RB05211ST-3C">3c</A>
Leitch DC.
Turner CS.
Schafer LL.
Angew. Chem. Int. Ed.
2010,
49:
6382
<A NAME="RB05211ST-3D">3d</A>
Behr A.
Johnen L.
Rentmeister N.
Adv.
Synth. Catal.
2010,
352:
2062
<A NAME="RB05211ST-3E">3e</A>
Shen XQ.
Buchwald SL.
Angew.
Chem. Int. Ed.
2010,
49:
564
<A NAME="RB05211ST-3F">3f</A>
Toups KL.
Widenhoefer RA.
Chem.
Commun.
2010,
46:
1712 ;
and references cited therein
For selected recent examples, see:
<A NAME="RB05211ST-4A">4a</A>
Shapiro ND.
Rauniyar V.
Hamilton GL.
Wu J.
Toste FD.
Nature (London)
2011,
470:
245
<A NAME="RB05211ST-4B">4b</A>
Qureshi ZS.
Deshmukh
KM.
Tambade PJ.
Dhake KP.
Bhalchandra M.
Bhanage BM.
Eur. J. Org. Chem.
2010,
6233
<A NAME="RB05211ST-4C">4c</A>
Taylor JG.
Adrio LA.
Hii KK.
Dalton Trans.
2010,
39:
1171
<A NAME="RB05211ST-4D">4d</A>
Ackermann L.
Althammer A.
Synlett
2008,
995
<A NAME="RB05211ST-4E">4e</A>
Cheng XJ.
Xia YZ.
Wei H.
Xu B.
Zhang C.
Li Y.
Qian G.
Zhang X.
Li K.
Li W.
Eur.
J. Org. Chem.
2008,
1929
<A NAME="RB05211ST-4F">4f</A>
Ackermann L.
Kaspar LT.
Althammer A.
Org.
Biomol. Chem.
2007,
5:
1975 ;
and references cited therein
For representative reviews, see:
<A NAME="RB05211ST-5A">5a</A>
Masarwa A.
Marek I.
Chem. Eur. J.
2010,
16:
9712
<A NAME="RB05211ST-5B">5b</A>
Pellissier H.
Tetrahedron
2010,
66:
8341
<A NAME="RB05211ST-5C">5c</A>
Audran G.
Pellissier H.
Adv. Synth. Catal.
2010,
352:
575
<A NAME="RB05211ST-5D">5d</A>
de Meijere A.
Kozhushkov
SI.
Schill H.
Chem. Rev.
2006,
106:
4926
<A NAME="RB05211ST-5E">5e</A>
Brandi A.
Cicchi S.
Cordero FM.
Goti A.
Chem. Rev.
2003,
103:
1213
<A NAME="RB05211ST-5F">5f</A>
Brandi A.
Goti A.
Chem. Rev.
1998,
98:
589
For selected reviews on metal-catalyzed
reactions of MCPs, see:
<A NAME="RB05211ST-6A">6a</A>
Rubin M.
Rubina V.
Gevorgyan V.
Chem.
Rev.
2007,
107:
3117
<A NAME="RB05211ST-6B">6b</A>
Nakamura I.
Yamamoto Y.
Adv. Synth. Catal.
2002,
344:
111
<A NAME="RB05211ST-6C">6c</A>
Binger P.
Schmidt T. In Methods
of Organic Chemistry (Houben-Weyl)
Vol. E17c:
de Meijere A.
Thieme;
Stuttgart:
1997.
p.2217-2294
<A NAME="RB05211ST-6D">6d</A>
Lautens M.
Klute W.
Tam W.
Chem.
Rev.
1996,
96:
49
<A NAME="RB05211ST-6E">6e</A>
Binger P.
Büch HM.
Top. Curr.
Chem.
1987,
135:
77
<A NAME="RB05211ST-7A">7a</A>
Siriwardana AI.
Kamada M.
Nakamura I.
Yamamoto Y.
J.
Org. Chem.
2005,
70:
5932
<A NAME="RB05211ST-7B">7b</A>
Nakamura I.
Itagaki H.
Yamamoto Y.
Chem. Heterocycl.
Compd. (Engl. Transl.)
2001,
37:
1532
<A NAME="RB05211ST-7C">7c</A>
Nakamura I.
Itagaki H.
Yamamoto Y.
J.
Org. Chem.
1998,
63:
6458
<A NAME="RB05211ST-8">8</A>
Shi M.
Liu LP.
Tang J.
Org.
Lett.
2006,
8:
4043
<A NAME="RB05211ST-9A">9a</A>
Smolensky E.
Kapon M.
Eisen MS.
Organometallics
2007,
26:
4510
<A NAME="RB05211ST-9B">9b</A>
Smolensky E.
Kapon M.
Eisen MS.
Organometallics
2005,
24:
5495
<A NAME="RB05211ST-10">10</A>
Ryu J.-S.
Li GY.
Marks TJ.
J.
Am. Chem. Soc.
2003,
125:
12584
<A NAME="RB05211ST-11A">11a</A>
Scott ME.
Lautens M.
J.
Org. Chem.
2008,
73:
8154
<A NAME="RB05211ST-11B">11b</A>
Scott ME.
Bethuel Y.
Lautens M.
J. Am. Chem. Soc.
2007,
129:
1482
<A NAME="RB05211ST-11C">11c</A>
Taillier C.
Lautens M.
Org. Lett.
2007,
9:
591
<A NAME="RB05211ST-11D">11d</A>
Scott ME.
Schwarz CA.
Lautens M.
Org. Lett.
2006,
8:
5521
<A NAME="RB05211ST-11E">11e</A>
Lu L.
Chen G.
Ma S.
Org. Lett.
2006,
8:
835
<A NAME="RB05211ST-11F">11f</A>
Scott ME.
Lautens M.
Org. Lett.
2005,
7:
3045
<A NAME="RB05211ST-11G">11g</A>
Scott ME.
Han W.
Lautens M.
Org. Lett.
2004,
6:
3309
<A NAME="RB05211ST-12A">12a</A>
Huang X.
Fu W.-J.
Synthesis
2006,
1016
<A NAME="RB05211ST-12B">12b</A>
Shao
L.-X.
Xu B.
Huang J.-W.
Shi M.
Chem. Eur. J.
2006,
12:
510
<A NAME="RB05211ST-12C">12c</A>
Siriwardana AI.
Kathriarachchi KKADS.
Nakamura I.
Yamamoto Y.
Heterocycles
2005,
66:
333
<A NAME="RB05211ST-12D">12d</A>
Chen Y.
Shi M.
J. Org. Chem.
2004,
69:
426
<A NAME="RB05211ST-12E">12e</A>
Shi M.
Xu B.
Huang J.-W.
Org.
Lett.
2004,
6:
1175
<A NAME="RB05211ST-12F">12f</A>
Shi M.
Chen Y.
Xu B.
Tang J.
Green Chem.
2003,
5:
85
<A NAME="RB05211ST-12G">12g</A>
Shi M.
Chen Y.
Xu B.
Tang J.
Tetrahedron Lett.
2002,
43:
8019
<A NAME="RB05211ST-13">13</A>
Danishefsky S.
Acc.
Chem. Res.
1979,
12:
66
For rare notable exceptions, see:
<A NAME="RB05211ST-14A">14a</A>
Fua W.
Xian Huang X.
Tetrahedron Lett.
2008,
49:
562
<A NAME="RB05211ST-14B">14b</A>
Li Q.
Shi M.
Timmons C.
Li G.
Org. Lett.
2006,
8:
625
<A NAME="RB05211ST-15">15</A>
Kozhushkov SI.
Yufit DS.
Ackermann L.
Org.
Lett.
2008,
10:
3409
For selected reports on ruthenium-catalyzed
C-H bond functionalizations from our laboratories, see:
<A NAME="RB05211ST-16A">16a</A>
Ackermann L.
Vicente R.
Potukuchi HK.
Pirovano V.
Org. Lett.
2010,
12:
5032
<A NAME="RB05211ST-16B">16b</A>
Ackermann L.
Novák P.
Vicente R.
Pirovano V.
Potukuchi HK.
Synthesis
2010,
2245
<A NAME="RB05211ST-16C">16c</A>
Ackermann L.
Novák P.
Org. Lett.
2009,
11:
4966
<A NAME="RB05211ST-16D">16d</A>
Ackermann L.
Born R.
Vicente R.
ChemSusChem
2009,
546
<A NAME="RB05211ST-16E">16e</A>
Ackermann L.
Vicente R.
Althammer A.
Org.
Lett.
2008,
10:
2299
<A NAME="RB05211ST-16F">16f</A>
Ackermann L.
Althammer A.
Born R.
Tetrahedron
2008,
64:
6115
<A NAME="RB05211ST-16G">16g</A>
Ackermann L.
Althammer A.
Born R.
Synlett
2007,
2833
<A NAME="RB05211ST-16H">16h</A> Review:
Ackermann L.
Vicente R.
Top. Curr. Chem.
2010,
292:
211
<A NAME="RB05211ST-16I">16i</A> Ruthenium-catalyzed hydroamination:
Ackermann L.
Althammer A.
Synlett
2006,
3125
<A NAME="RB05211ST-17A">17a</A>
¹H
NMR and ¹³C NMR spectra of 2 were identical to those of an independently
prepared sample, following a published procedure. See:
Hanack M.
Eggensperger H.
Liebigs
Ann. Chem.
1963,
663:
31
<A NAME="RB05211ST-17B">17b</A>
Compound 2: ¹H NMR (250 MHz,
CDCl3): δ = 1.61 (s, 1 H), 0.79-0.90
(m, 3 H), 0.43-0.49 (m, 6 H), 0.29-0.40 (m, 6
H). ¹³C NMR (62.9 MHz, CDCl3): δ = 69.7
(C), 18.7 (CH), -0.1 (CH2). [D]1-2: ¹H NMR (250 MHz,
CDCl3): δ = 1.60 (s, 1 H), 0.79-0.91
(m, 2 H), 0.43-0.49 (m, 6 H), 0.28-0.40 (m, 6
H). ¹³C NMR (62.9 MHz, CDCl3): δ = 69.7
(C), 18.7 (CD), 18.3 (t, J = 24.0 Hz,
CH), -0.1 (CH2), -0.2 (CH2).
<A NAME="RB05211ST-18">18</A> The use of pure HCl as the catalyst
may result in ring-opening reactions even under mild reaction conditions:
Donskaya NA.
Shulishov EV.
Shabarov YS.
Zh.
Org. Khim.
1981,
17:
2102
<A NAME="RB05211ST-19">19</A>
However, traces (<5%)
of a ring-opened product were detected in the ¹H
NMR spectrum of crude product 7b.
<A NAME="RB05211ST-20">20</A>
General Procedure
for the Preparation of Benzyl(tricyclopropylmethyl)amine (7a), Phenethyl(tricyclopropylmethyl)amine
(7b) and
n
-Octyl(tricyclopropylmethyl)amine (7c):
A flame-dried Schlenk flask was cooled and charged with 1, (402.6 mg, 442.1 µL, 3.0 mmol),
the corresponding amine (1.0 equiv) and NH4Cl (16.0 mg,
10 mol%) in anhyd 1,4-dioxane (3.0 mL) under Ar. After
stirring the reaction mixture for 48 h at 120 ˚C, Et2O
(50 mL) was added at ambient temperature, and the reaction mixture
was extracted with aq HCl (0.1 N, 2 × 80
mL). The combined aqueous phases were washed with Et2O
(2 × 50 mL) and, after addition of aq NaOH (1 N, 25 mL), extracted with CH2Cl2 (3 × 40
mL). The combined organic phases were dried over K2CO3 and
concentrated under reduced pressure. The residue was dissolved in
MeOH (20 mL), stirred with charcoal (2.0 g) at ambient temperature overnight,
quickly filtered through a thin pad of silica gel and concentrated
in vacuo. Amines 7a-c (1.0 mmol) were dissolved in CH2Cl2 (5.0
mL), and a solution of p-TsOH˙H2O (190.2
mg, 1.0 mmol, 1.0 equiv) in MeOH (2.0 mL) was added in one portion
at ambient temperature. After an additional stirring for 10 min,
the reaction mixture was evaporated, and the corresponding p-toluenesulfonate was purified by slow
evaporation of its solution in CH2Cl2-octane
(7a˙p-TsOH:
92% yield, and 7c˙p-TsOH: 94% yield) or in THF-octane
(7b˙p-TsOH:
95% yield) at +4 ˚C. Compound 7a: colorless oil. ¹H
NMR (250 MHz, CDCl3):
δ = 7.21-7.38
(m, 5 H), 3.98 (s, 2 H), 1.53 (br s, 1 H), 0.69-0.71 (m,
3 H), 0.48-0.53 (m, 6 H), 0.29-0.35 (m, 6 H). ¹³C NMR
(62.9 MHz, CDCl3): δ = 142.3 (C), 128.0
(CH), 127.8 (CH), 126.6 (CH), 52.9 (C), 46.7 (CH2), 15.9
(CH), 0.0 (CH2). Compound 7a×p-TsOH: colorless crystals; mp 137-139 ˚C. ¹H
NMR (250 MHz, CDCl3): δ = 8.34 (br
s, 2 H), 7.65 (d, J = 8.0 Hz,
2 H), 7.52-7.56 (m, 2 H), 7.20-7.26 (m, 3 H),
7.16 (d, J = 8.0 Hz, 2 H), 4.29
(t, J = 5.6 Hz, 2 H), 2.37 (s,
3 H), 0.65-0.75 (m, 9 H), 0.40-0.47 (m, 6 H). ¹³C
NMR (62.9 MHz, CDCl3): δ = 142.4 (C),
139.9 (C), 132.4 (C), 130.2 (CH), 128.6 (CH), 128.5 (CH), 128.4
(CH), 125.9 (CH), 67.0 (C), 46.5 (CH2), 21.3 (Me), 11.5
(CH), 1.8 (CH2). Compound 7b:
colorless oil. ¹H NMR (250 MHz, CDCl3): δ = 7.17-7.29
(m, 5 H), 3.05 (t, J = 7.3 Hz,
2 H), 2.75 (t, J = 7.3 Hz, 2
H), 1.53 (br s, 1 H), 0.51-0.60 (m, 3 H), 0.36-0.42 (m,
6 H), 0.20-0.32 (m, 6 H). ¹³C
NMR (62.9 MHz, CDCl3): δ = 140.6 (C),
128.7 (CH), 128.1 (CH), 125.8 (CH), 52.9 (C), 43.8 (CH2),
37.5 (CH2), 15.6 (CH), 0.0 (CH2). Compound 7b˙p-TsOH:
colorless crystals; mp 149-150 ˚C. ¹H
NMR (250 MHz, CDCl3): δ = 8.48 (br
s, 2 H), 7.80 (d, J = 8.0 Hz, 2
H), 7.12-7.26 (m, 7 H), 3.25-3.41 (m, 4 H), 2.38
(s, 3 H), 0.72-0.75 (m, 9 H), 0.41-0.46 (m, 6
H). ¹³C NMR (62.9 MHz, CDCl3): δ = 142.8
(C), 140.0 (C), 137.8 (C), 129.0 (CH), 128.8 (CH), 128.5 (CH), 126.6
(CH), 125.8 (CH), 65.2 (C), 43.9 (CH2), 32.7 (CH2),
21.3 (Me), 11.0 (CH), 1.4 (CH2). Compound 7c:
colorless oil. ¹H NMR (250 MHz, CDCl3): δ = 2.75
(t, J = 7.0 Hz, 2 H), 1.65 (br
s, 1 H), 1.35-1.51 (m, 2 H), 1.27 (m, 10 H), 0.88 (t, J = 6.5 Hz, 3 H), 0.54-0.63
(m, 3 H), 0.37-0.45 (m, 6 H), 0.23-0.30 (m, 6
H). ¹³C NMR (62.9 MHz, CDCl3): δ = 42.4
(C), 31.8 (CH2), 31.4 (CH2), 29.6 (CH2),
29.3 (CH2), 27.5 (CH2), 26.4 (CH2),
22.6 (CH2), 15.7 (CH), 14.1 (Me), 0.0 (CH2).
Compound 7c˙p-TsOH:
colorless crystals; mp 159-161 ˚C. ¹H
NMR (250 MHz, CDCl3): δ = 8.18 (br
s, 2 H), 7.71 (d, J = 8.3 Hz,
2 H), 7.14 (d, J = 8.3 Hz, 2
H), 3.03 (m, 2 H), 2.35 (s, 3 H), 1.92 (m, 2 H), 1.22 (m, 10 H),
0.88 (t, J = 6.5 Hz, 3 H), 0.73-0.75 (m,
9 H), 0.42-0.50 (m, 6 H). ¹³C
NMR (62.9 MHz, CDCl3): δ = 143.0 (C),
139.6 (C), 128.6 (CH), 125.7 (CH), 64.8 (C), 42.3 (CH2),
31.8 (CH2), 29.4 (CH2), 29.2 (CH2),
27.4 (CH2), 26.4 (CH2), 22.6 (CH2),
21.3 (Me), 14.1 (Me), 11.0 (CH), 1.4 (CH2).
<A NAME="RB05211ST-21">21</A>
Yang Y.
Huang X.
Synlett
2008,
1366
<A NAME="RB05211ST-22">22</A>
CCDC 821336 (7a˙p-TsOH), CCDC 821337 (7b˙p-TsOH) and CCDC 821338 (7c˙p-TsOH) contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge via
www.ccdc.cam.ac.uk/conts/retrieving.html [or
from the Cambridge Crystallographic Data Centre, 12, Union Road,
Cambridge CB21EZ, UK; fax: +44 (1223)336033; or deposit@ccdc.cam.ac.uk].
See also:
<A NAME="RB05211ST-23A">23a</A>
Bernlohr W.
Beckhaus HD.
Peters K.
von Schnering HG.
Rüchardt C.
Chem. Ber.
1984,
117:
1013
<A NAME="RB05211ST-23B">23b</A>
Auzeil N.
Tomas A.
Fleury MB.
Largeron M.
Tetrahedron Lett.
2000,
41:
8781
<A NAME="RB05211ST-24A">24a</A>
Herrero R.
Quintanilla E.
Müller P.
Abboud J.-LM.
Chem. Phys. Lett.
2006,
420:
493
<A NAME="RB05211ST-24B">24b</A>
Abboud J.-LM.
Alkorta I.
Davalos JZ.
Müller P.
Quintanilla E.
Rossier J.-C.
J.
Org. Chem.
2003,
68:
3786
<A NAME="RB05211ST-24C">24c</A>
Olah GA.
Reddy VP.
Rasul G.
Prakash GKS.
J.
Am. Chem. Soc.
1999,
121:
9994
<A NAME="RB05211ST-24D">24d</A>
Arnett EM.
Hofelich TC.
J.
Am. Chem. Soc.
1983,
105:
2889
<A NAME="RB05211ST-24E">24e</A>
Olah GA.
Westerman PW.
Nishimura J.
J. Am. Chem. Soc.
1974,
96:
3548
<A NAME="RB05211ST-24F">24f</A>
Olah GA.
Angew. Chem., Int. Ed. Engl.
1973,
12:
173
<A NAME="RB05211ST-24G">24g</A>
Carey FA.
Tremper HS.
J.
Am. Chem. Soc.
1969,
91:
2967
<A NAME="RB05211ST-24H">24h</A>
Pittman CU.
Olah GA.
J.
Am. Chem. Soc.
1965,
87:
5123
<A NAME="RB05211ST-24I">24i</A>
Deno NC.
Richey HG.
Liu JS.
Hodge JD.
Houser JJ.
Max J.
Wisotsky MJ.
J. Am.
Chem. Soc.
1962,
84:
2016
<A NAME="RB05211ST-24J">24j</A>
Hart H.
Law PA.
J. Am. Chem.
Soc.
1962,
84:
2462
<A NAME="RB05211ST-25A">25a</A>
Ahrens H,
Dietrich H,
Auler T,
Hills M,
Kehne H,
Feucht D,
Herrmann S,
Kather K, and
Lehr S. inventors; Ger.
Offen., DE 102006059941 A1.
; Chem. Abstr. 2008, 149, 79650
<A NAME="RB05211ST-25B">25b</A>
Ahrens H,
Dietrich H,
Auler T,
Hills M,
Kehne H,
Feucht D,
Herrmann S,
Kather K, and
Lehr S. inventors; PCT Int.
Appl., WO 2008074403 A2.
; Chem. Abstr. 2008, 149, 79649
<A NAME="RB05211ST-26A">26a</A>
Bénard S.
Neuville L.
Zhu J.
Chem. Commun.
2010,
46:
3393
<A NAME="RB05211ST-26B">26b</A>
Bénard S.
Neuville L.
Zhu J.
J.
Org. Chem.
2008,
73:
6441 ;
and references cited therein