Subscribe to RSS
DOI: 10.1055/s-0030-1260760
Direct Benzylic Oxidation with Sodium Hypochlorite Using a New Efficient Catalytic System: TEMPO/Co(OAc)2
Publication History
Publication Date:
26 May 2011 (online)

Abstract
Direct benzylic oxidation of arenes was achieved using NaClO/TEMPO/Co(OAc)2. Various aromatic aldehydes and ketones were obtained from alkylarenes directly by benzylic oxidation in good to excellent yields. The reaction reactivity, selectivity, and scope of the reaction were investigated.
Key words
benzylic oxidation - arenes - transition metals - TEMPO - sodium hypochlorite
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Sheldon RA.Kochi JK. Metal-Catalyzed Oxidations of Organic Compounds Academic Press; New York: 1981.Reference Ris Wihthout Link - 1b
Warren S. In Organic Synthesis: The Disconnection Approach J. Wiley and Sons; Singapore: 2004. p.57Reference Ris Wihthout Link - 1c
Warren S. In Organic Synthesis: The Disconnection Approach John Wiley and Sons; Singapore: 2004. p.201Reference Ris Wihthout Link - 1d
Warren S. In Organic Synthesis: The Disconnection Approach John Wiley and Sons; Singapore: 2004. p.330Reference Ris Wihthout Link - 1e
Recupero F.Punta C. Chem. Rev. 2007, 107: 3800Reference Ris Wihthout Link - 1f
Handbook
of C-H Transformation
Dyker D. Wiley-VCH; Weinheim: 2005.Reference Ris Wihthout Link - 2a
Rangarajan R.Eisenbraun EJ. J. Org. Chem. 1985, 50: 2435Reference Ris Wihthout Link - 2b
Rathore R.Saxena N.Chandrasekaran S. Synth. Commun. 1986, 16: 1493Reference Ris Wihthout Link - 2c
Muzart J. Tetrahedron Lett. 1987, 28: 3139Reference Ris Wihthout Link - 3a
Gannon SM.Krause JG. Synthesis 1987, 915Reference Ris Wihthout Link - 3b
Li WS.Liu LG. Synthesis 1989, 293Reference Ris Wihthout Link - 3c
Zhao D.Lee DG. Synthesis 1994, 915Reference Ris Wihthout Link - 3d
Shaabani A.Lee DG. Tetrahedron Lett. 2001, 42: 5833Reference Ris Wihthout Link - 4a
Banik BK.Venkatraman MS.Mukhopadhyay C.Becker FF. Tetrahedron Lett. 1998, 39: 7247Reference Ris Wihthout Link - 4b
Shaabani A.Bazgir A.Abdoli M. Synth. Commun. 2002, 32: 675Reference Ris Wihthout Link - 4c
Shaabani A.Lee DG. Synth. Commun. 2003, 33: 1255Reference Ris Wihthout Link - 5a
Ishii Y.Nakayama K.Takeno M.Sakaguchi S.Iwahama T.Nishiyama Y. J. Org. Chem. 1995, 60: 3934Reference Ris Wihthout Link - 5b
Yang G.Zhang Q.Miao H.Tong X.Xu J. Org. Lett. 2005, 7: 263Reference Ris Wihthout Link - 6
Lee NH.Lee C.Jung DS. Tetrahedron Lett. 1998, 39: 1385 - 7
Dohi T.Takenaga N.Goto A.Fujioka H.Kita Y.
J. Org. Chem. 2008, 73: 7365 - 8
Catino AJ.Nichols JM.Choi H.Gottipamula S.Doyle MP. Org. Lett. 2005, 7: 5167 - 9
Li H.Li Z.Shi Z. Tetrahedron 2009, 65: 1856 - 10
Yi CS.Kwon KH.Lee DW. Org. Lett. 2009, 11: 1567 - 11a
Vogler T.Studer A. Synthesis 2008, 1979Reference Ris Wihthout Link - 11b
Ciriminna R.Pagliaro M. Org. Process Res. Dev. 2010, 14: 245Reference Ris Wihthout Link - 12a
Lucio Anelli PL.Biffi C.Montanari F.Quici S. J. Org. Chem. 1987, 52: 2559Reference Ris Wihthout Link - 12b
Semmelhack MF.Schmid CR.Cortes DA.Chou CS. J. Am. Chem. Soc. 1984, 106: 3374Reference Ris Wihthout Link - 12c
Shibuya M.Sato T.Tomizawa M.Iwabuchi Y. Chem. Commun. 2009, 13: 1739Reference Ris Wihthout Link - 12d
Hirota M.Tamura N.Saito T.Isogai A. Carbohydr. Polym. 2009, 78: 330Reference Ris Wihthout Link - In fact, the amount of HClO becomes significant at the pH of 8.3:
- 13a
Montanari F.Penso M.Quici S.Vigano P. J. Org. Chem. 1985, 50: 4888Reference Ris Wihthout Link - 13b
Banfi S.Montanari F.Quici S. J. Org. Chem. 1989, 54: 1850Reference Ris Wihthout Link - 14a
Singh SJ.Jayaram RV. Catal. Commun. 2009, 10: 2004Reference Ris Wihthout Link - 14b
Marwah P.Marwah A.Lardy HA. Green Chem. 2004, 6: 570Reference Ris Wihthout Link - TEMPO can react directly with activated hydrocarbons by hydrogen abstraction:
- 15a
Coseri S.Ingold KU. Org. Lett. 2004, 6: 1641Reference Ris Wihthout Link - 15b
Babiarz JE.Cunkle GT.DeBellis AD.Eveland D.Pastor SD.Shum SP. J. Org. Chem. 2002, 67: 6831Reference Ris Wihthout Link - 16 For example, a similar mechanism
is proposed:
Auty K.Gilbert BC.Barry Thomas C.Brown SW.Jones CW.Sanderson WR. J. Mol. Catal. A: Chem. 1997, 117: 279 - It was suggested that the alkyl hypochlorite is converted to ketone in an E2-type reaction:
- 18a
Mohrig JR.Nienhulus DM.Linck CF.Zoeren CV.Fox BB.Mahaffy PG. J. Chem. Educ. 1985, 62: 519Reference Ris Wihthout Link - 18b
Sakai A.Hendrickson DG.Hendrickson WH. Tetrahedron Lett. 2000, 41: 2759Reference Ris Wihthout Link - 18c
Bright ZR.Luyeye CR.Marie Morton AS.Sedenko M.Landolt RG.Bronzi MJ.Bohovic KM.Alex Gonser MW.Lapainis TE.Hendrickson WH. J. Org. Chem. 2005, 70: 684Reference Ris Wihthout Link - It was reported that the oxidation of moderately active alkylaromatics based on NaOCl with a mechanism involving the substitution course:
- 19a
Correia J. J. Org. Chem. 1992, 57: 4555Reference Ris Wihthout Link - 19b
Clark JH.Grigoropoulo G.Scott K. Synth. Commun. 2000, 30: 3731Reference Ris Wihthout Link - 21
Dailey JI.Hays RS.Lee H.Mitchell RM.Ries JJ.Landolt RG.Husmann HH.Lockridge JB.Hendrickson WH. J. Org. Chem. 2000, 65: 2568
References and Notes
General Procedure for the Oxidation of 1a Using Ca(ClO) 2 To a mortar were added 1a (1 mmol), TEMPO (0.05 mmol), Co(OAc)2 (0.01 mmol), Ca(ClO)2 (2.5 mmol), and silica gel (0.3 g). After 0.5 h under solid grinding at r.t., the reaction was complete (TLC control). The reaction mixture was dissolved in CH2Cl2 (3 mL). After filtration, the solvent was evaporated off. The remaining mixture was passed through a silica gel column to give 2a. White solid; mp 47.8-49.4 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 7.74-7.84 (m, 4 H), 7.53-7.63 (m, 2 H), 7.41-7.52 (m, 4 H). ¹³C NMR (100 MHz, CDCl3): δ = 196.7, 137.5, 132.3, 130.0, 128.2. MS (EI): m/z (%) = 182 (100) [M+], 105 (15), 77 (14), 51 (8).
20
General Procedures
To
a solution of alkylarenes (1 mmol) in CH2Cl2 (3
mL) at 0-5 ˚C, TEMPO (0.05 mmol) and
Co(OAc)2 (0.01 mmol) were added followed by the quick
addition of a sample containing 3 mmol of aq NaClO at pH 8.3. After
6 h under magnetic stirring, the reaction was complete (TLC control). The
organic phase is separated, washed with H2O, and dried over
Na2SO4. After filtration, the solvent was
evaporated off. The remaining mixture was passed through a silica
gel column to obtain the pure products.
Compound 2o: pink solid; mp 160.9-162.1 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 8.21
(d, J = 7.8
Hz, 2 H), 7.39-7.68 (m, 6 H), 2.13 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3): δ = 181.4,
169.9, 141.8, 140.6, 134.4, 133.1, 133.0, 131.5, 130.3, 130.0, 129.0,
128.6, 127.7, 126.3, 89.6, 23.6. MS (EI): m/z (%) = 323
(3) [M+ + 4], 321
(18) [M+ + 2], 319
(27) [M+], 284 (64), 242 (100),
213 (95), 178 (71). ESI-HRMS: m/z calcd
for C16H12Cl2NO2: 320.0245;
found: 320.0226.
Gramscale Preparation
of 2a
To a solution of 1a (8.4
g,50 mmol) in CH2Cl2 (150 mL) at 0-5 ˚C,
TEMPO (0.39 g, 2.5 mmol) and Co(OAc)2 (0.12 g, 0.5mmol)
were added followed by the quick addition of a sample containing
150 mmol of aq NaClO at pH 8.3. The mixture was vigorously stirred
for 6 h. The organic phase is separated and washed with H2O.
The solvent was evaporated off. Purification of the residue by recrystallization
gave 2a (7.98 g, 47.5 mmol, mp 47-49 ˚C)
in 95% yield.