Synthesis 2011(23): 3839-3847  
DOI: 10.1055/s-0030-1260253
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Homo- and Heterocoupling of Terminal Conjugated Enynes: One-Pot Synthesis of Alka-1,7-diene-3,5-diynes and Alk-1-ene-3,5-diynes via Two Types of Coupling Reaction

Masayuki Hoshi*, Mitsuhiro Okimoto, Shingo Nakamura, Shinya Takahashi
Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
Fax: +81(157)247719; e-Mail: hoshi-m@chem.kitami-it.ac.jp;
Further Information

Publication History

Received 1 August 2011
Publication Date:
05 October 2011 (online)

Abstract

Conjugated dienediynes and enediynes with definite geometry­ have been prepared in a one-pot manner. This protocol involves two types of coupling reaction, a Suzuki-type coupling and either a Hay coupling or a Cadiot-Chodkiewicz coupling. Thus, the copper-mediated cross-coupling reaction of (E)-alk-1-enyldisiamylborane with (trimethylsilyl)ethynyl bromide is carried out in the presence of 1 M NaOMe to generate (E)-alk-3-en-1-yne, which is subjected to either palladium/copper-catalyzed homocoupling in the presence of DABCO or copper-catalyzed heterocoupling with 1-iodoalk-1-yne in the presence of TBD or pyrrolidine in a single reaction pot without isolating (E)-alk-3-en-1-yne. The homocoupling has realized the stereoselective construction of (1E,7E)-alka-1,7-diene-3,5-diynes, and the heterocoupling has achieved the formation of (E)-alk-1-ene-3,5-diynes. In addition, starting from (Z)-alk-1-enyldisiamylborane instead of the E-isomer, this series of reactions has led to the formation of (1Z,7Z)-alka-1,7-diene-3,5-diynes and (Z)-alk-1-ene-3,5-diynes, albeit limiting the scope of the substrate.

    References

  • 1a Siemsen P. Livingston RC. Diederich F. Angew. Chem. Int. Ed.  2000,  39:  2632 ; and references cited therein
  • 1b Metal-Catalyzed Cross-Coupling Reactions   Vol. 1:  de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004. 
  • 2 Shi Shun ALK. Tykwinski RR. Angew. Chem. Int. Ed.  2006,  45:  1034 ; and references cited therein
  • 3a Tour JM. Acc. Chem. Res.  2000,  33:  791 
  • 3b Bunz UHF. Chem. Rev.  2000,  100:  1605 
  • 3c Gholami M. Tykwinski RR. Chem. Rev.  2006,  106:  4997 
  • 4 Hay AS. J. Org. Chem.  1962,  27:  3320 
  • 5a Kabalka GW. Wang L. Pagni RM. Synlett  2001,  108 
  • 5b Lei A. Srivastava M. Zhang X. J. Org. Chem.  2002,  67:  1969 
  • 5c Fairlamb IJS. Bäuerlein PS. Marrison LR. Dickinson JM. Chem. Commun.  2003,  632 
  • 5d Liao Y. Fathi R. Yang Z. Org. Lett.  2003,  5:  909 
  • 5e Yadav JS. Reddy BVS. Reddy KB. Gayathri KU. Prasad AR. Tetrahedron Lett.  2003,  44:  6493 
  • 5f Batsanov AS. Collings JC. Fairlamb IJS. Holland JP. Howard JAK. Lin Z. Marder TB. Parsons AC. Ward RM. Zhu J. J. Org. Chem.  2005,  70:  703 
  • 5g Li J.-H. Liang Y. Zhang X.-D. Tetrahedron  2005,  61:  1903 
  • 5h Li J.-H. Liang Y. Xie Y.-X. J. Org. Chem.  2005,  70:  4393 
  • 5i Jiang H.-F. Tang J.-Y. Wang A.-Z. Deng G.-H. Yang S.-R. Synthesis  2006,  1155 
  • 5j Shi M. Qian H.-X. Appl. Organomet. Chem.  2006,  20:  771 
  • 5k Zhu BC. Jiang XZ. Appl. Organomet. Chem.  2007,  21:  345 
  • 5l Yan J. Lin F. Yang Z. Synthesis  2007,  1301 
  • 5m Yan F. Cui X. Li Y.-N. Zhang J. Ren G.-R. Wu Y. Tetrahedron  2007,  63:  1963 
  • 5n Kurita T. Abe M. Maegawa T. Monguchi Y. Sajiki H. Synlett  2007,  2521 
  • 5o Yan J. Wu J. Jin H. J. Organomet. Chem.  2007,  692:  3636 
  • 5p Kamata K. Yamaguchi S. Kotani M. Yamaguchi K. Mizuno N. Angew. Chem. Int. Ed.  2008,  47:  2407 
  • 5q Li D. Yin K. Li J. Jia X. Tetrahedron Lett.  2008,  49:  5918 
  • 5r Chen S.-N. Wu W.-Y. Tsai F.-Y. Green Chem.  2009,  11:  269 
  • 5s Kuhn P. Alix A. Kumarraja M. Louis B. Pale P. Sommer J. Eur. J. Org. Chem.  2009,  423 
  • 5t Hilt G. Hengst C. Arndt M. Synthesis  2009,  395 
  • 5u Li L. Wang J. Zhang G. Liu Q. Tetrahedron Lett.  2009,  50:  4033 
  • 5v Oishi T. Katayama T. Yamaguchi K. Mizuno N. Chem. Eur. J.  2009,  15:  7539 
  • 5w Adimurthy S. Malakar CC. Beifuss U. J. Org. Chem.  2009,  74:  5648 
  • 5x Chassaaing S. Alix A. Boningari T. Sani Souna Sido K. Keller M. Kuhn P. Louis B. Sommer J. Pale P. Synthesis  2010,  1557 
  • 5y Balaraman K. Kesavan V. Synthesis  2010,  3461 
  • 6a Damle SV. Seomoon D. Lee PH. J. Org. Chem.  2003,  68:  7085 
  • 6b Chen Z. Jiang H. Wang A. Yang S. J. Org. Chem.  2010,  75:  6700 
  • 7a Ikegashira K. Nishihara Y. Hirabayashi K. Mori A. Hiyama T. Chem. Commun.  1997,  1039 
  • 7b Ishikawa T. Ogawa A. Hirao T. Organometallics  1998,  17:  5713 
  • 7c Nishihara Y. Ikegashira K. Hirabayashi K. Ando J. Mori A. Hiyama T. J. Org. Chem.  2000,  65:  1780 
  • 7d Bharathi P. Periasamy M. Organometallics  2000,  19:  5511 
  • 7e Shirakawa E. Nakao Y. Murota Y. Hiyama T. J. Organomet. Chem.  2003,  670:  132 
  • 7f Yoshida H. Yamaryo Y. Ohshita J. Kunai A. Chem. Commun.  2003,  1510 
  • 7g Oh CH. Reddy VR. Tetrahedron Lett.  2004,  45:  5221 
  • 7h Nishihara Y. Okamoto M. Inoue Y. Miyazaki M. Miyasaka M. Takagi K. Tetrahedron Lett.  2005,  46:  8661 
  • 7i Krasovskiy A. Tishkov A. del Amo V. Mayr H. Knochel P. Angew. Chem. Int. Ed.  2006,  45:  5010 
  • 7j Cahiez G. Moyeux A. Buendia J. Duplais C.
    J. Am. Chem. Soc.  2007,  129:  13788 
  • 7k Paixão MW. Weber M. Braga AL. de Azeredo JB. Deobald AM. Stefani HA. Tetrahedron Lett.  2008,  49:  2366 
  • 7l Maji MS. Pfeifer T. Studer A. Angew. Chem. Int. Ed.  2008,  47:  9547 
  • 7m Singh FV. Amaral MFZJ. Stefani HA. Tetrahedron Lett.  2009,  50:  2636 
  • 8 Cadiot P. Chodkiewicz W. In Chemistry of Acetylenes   Viehe HG. Dekker; New York: 1969.  p.597 
  • 9a Wityak J. Chan JB. Synth. Commun.  1991,  21:  977 
  • 9b Cai C. Vasella A. Helv. Chim. Acta  1995,  78:  2053 
  • 9c Alami M. Ferri F. Tetrahedron Lett.  1996,  37:  2763 
  • 9d Barbu E. Tsibouklis J. Tetrahedron Lett.  1996,  37:  5023 
  • 9e Montierth JM. DeMario DR. Kurth MJ. Schore NE. Tetrahedron  1998,  54:  11741 
  • 9f Marino JP. Nguyen HN. J. Org. Chem.  2002,  67:  6841 
  • 9g Jiang H.-F. Wang A.-Z. Synthesis  2007,  1649 
  • 10a Nye SA. Potts KT. Synthesis  1988,  375 
  • 10b Balova IA. Morozkina SN. Knight DW. Vasilevsky SF. Tetrahedron Lett.  2003,  44:  107 
  • 10c Fiandanese V. Bottalico D. Marchese G. Punzi A. Tetrahedron Lett.  2003,  44:  9087 
  • 10d Liang Y. Tao L.-M. Zhang Y.-H. Li J.-H. Synthesis  2008,  3988 
  • 11a Kwon JH. Lee ST. Shim SC. Hoshino M. J. Org. Chem.  1994,  59:  1108 
  • 11b Alami M. Crousse B. Linstrumelle G. Tetrahedron Lett.  1995,  36:  3687 
  • 11c Negishi E. Hata M. Xu C. Org. Lett.  2000,  2:  3687 
  • 12a Ziegler CB. Harris SM. Baldwin JE. J. Org. Chem.  1987,  52:  443 
  • 12b Nishihara Y. Ikegashira K. Mori A. Hiyama T. Tetrahedron Lett.  1998,  39:  4075 
  • 12c Shen W. Thomas SA. Org. Lett.  2000,  2:  2857 
  • 12d Shin Shun ALK. Chernick ET. Eisler S. Tykwinski RR. J. Org. Chem.  2003,  68:  1339 
  • 12e Yin W. He C. Chen M. Zhang H. Lei A. Org. Lett.  2009,  11:  709 
  • 12f Coste A. Couty F. Evano G. Synthesis  2010,  1500 
  • 13a Hoshi M. Nakayabu H. Shirakawa K. Synthesis  2005,  1991 
  • 13b Hoshi M. Suzuki S. Saitoh S. Okimoto M. Shirakawa K. Tetrahedron Lett.  2007,  48:  119 
  • 13c Hoshi M. Iizawa T. Okimoto M. Shirakawa K. Synthesis  2008,  3591 
  • 13d Hoshi M. Yamazaki H. Okimoto M. Synlett  2010,  2461 
  • 14a Hoshi M. Shirakawa K. Synlett  2002,  1101 
  • 14b Hoshi M. Kawamura N. Shirakawa K. Synthesis  2006,  1961 
  • 17 Negishi E. Williams RM. Lew G. Yoshida T. J. Organomet. Chem.  1975,  92:  C4 
  • 19 Hofmeister H. Annen K. Laurent H. Wiechert R. Angew. Chem., Int. Ed. Engl.  1984,  23:  727 
  • 20 Southwick PL. Kirchiner JR. J. Org. Chem.  1962,  27:  3305 
  • 21 Schulte KE. Goes M. Arch. Pharm. (Weinheim, Ger.)  1959,  290:  118 
  • 22a Zweifel G. Brown HC. Org. React.  1963,  13:  1 
  • 22b Brown HC. Organic Syntheses via Boranes   Wiley-Interscience; New York: 1975. 
15

Compound 2a was formed in about 75% GC yield based on Me3SiCºCBr used; unpublished results.

16

In the original procedure ethyl bromoacetate was used as the oxidant.

18

Compounds 5a and 5b were formed in 72-75% GC yield based on Me3SiCºCBr used; unpublished results.