Synthesis 2011(14): 2321-2333  
DOI: 10.1055/s-0030-1260073
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

One-Pot Synthesis of Fused-Tetracyclic Scaffolds Employing a Lewis Acid Promoted Domino Reaction of Naphthoquinones

Yassine Bendiabdellah, Isabel Villanueva-Margalef, Antonio Misale, Kazi S. Nahar, Mohammad R. Haque, David E. Thurston, Giovanna Zinzalla*
Cancer Research UK Protein-Protein Interactions Drug Discovery Research Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London, WC1N 1AX, UK
Fax: +44(20)77535964; e-Mail: giovanna.zinzalla@pharmacy.ac.uk;
Further Information

Publication History

Received 2 March 2011
Publication Date:
16 June 2011 (online)

Abstract

The facile synthesis of tetracyclic molecular frameworks employing a Lewis acid promoted domino reaction of naphthoquinones with hydroxy- and amino-functionalized cross-conjugated trienes is reported. The reaction cascade involves a heterocyclization via hemiacetal or imine formation, and an intramolecular Diels­-Alder cycloaddition.

    References

  • 1 Zinzalla G. Thurston DE. Future Med. Chem.  2009,  1:  65 
  • 2 Bendiabdellah Y. Zinzalla G. Badarch U. Nahar KS. Antonow D. Rahman KM. Shoemaker RH. Melillo G. Thurston DE. Proceedings of the 100th Annual Meeting of the American Association for Cancer Research, San Diego, April 18-22, 2009   AACR; Philadelphia: 2009.  p.4646 
  • 3 Park EJ. Kong D. Fisher R. Cardellina J. Shoemaker RH. Melillo G. Cell Cycle  2006,  5:  1847 
  • 4a Ward DE. Abaee MS. Org. Lett.  2000,  2:  3937 
  • 4b Ward DE. Souweha MS. Org. Lett.  2005,  7:  3533 
  • 4c Souweha MS. Arab A. ApSimon M. Fallis AG. Org. Lett.  2007,  9:  615 
  • 4d Souweha MS. Enright GD. Fallis AG. Org. Lett.  2007,  9:  5163 
  • 5 Nicolaou KC. Lim YH. Becker J. Angew. Chem. Int. Ed.  2009,  48:  3444 
  • 6 Grieco PA. Galatsis P. Spohn RF. Tetrahedron  1986,  42:  2847 
  • 7 Woo S. Squires N. Fallis AG. Org. Lett.  1999,  1:  573 
  • 10a Grieco PA. Nunes JJ. Gaul MD. J. Am. Chem. Soc.  1990,  112:  4595 
  • 10b Heydari A. Tetrahedron  2002,  58:  6777 
  • 11a Stojanac Z. Dickinson RA. Stojanac N. Woznow RJ. Valenta Z. Can. J. Chem.  1975,  53:  616 
  • 11b Kelly TR. Gillard JW. Goerner RN. Lyding JM. J. Am. Chem. Soc.  1977,  99:  5513 
  • 11c Trost BM. Ippen J. Vladuchick WC. J. Am. Chem. Soc.  1977,  99:  8116 
  • 11d Boeckman RK. Dolak TM. Culos KO. J. Am. Chem. Soc.  1978,  100:  7098 
  • 11e Motoyoshiya J. Kameda T. Asari M. Miyamoto M. Narita S. Aoyama H. Hayashi S. J. Chem. Soc., Perkin Trans. 2  1997,  1845 
  • 12 Azumaya I. Uchida D. Kato T. Yokoyama A. Tanatani A. Takayanagi H. Yokozawa T. Angew. Chem. Int. Ed.  2004,  43:  1360 
  • 13 Ito M. Koo LW. Himizu A. Kobayashi C. Sakaguchi A. Ikariya T. Angew. Chem. Int. Ed.  2009,  48:  1324 
  • 14 Abraham E. Davies SG. Millican NL. Nicholson RL. Roberts PM. Smith AD. Org. Biomol. Chem.  2008,  6:  1655 
  • 15 Negro A. Garzon MJ. Martin JF. El Marini A. Roumestant ML. Lazaro R. Synth. Commun.  1991,  21:  359 
  • 16 Dose C. Seitz O. Bioorg. Med. Chem.  2008,  16:  65 
  • 17 Prevost C. Miginiac P. Miginiac-Groizeleau L. Bull. Soc. Chim. Fr.  1964,  2485 
  • 18 DeBoef B. Counts WR. Gilbertson SR. J. Org. Chem.  2007,  72:  799 
8

The reactions were monitored by LC-MS and TLC on silica gel.

9

The structures and relative stereochemistries were unambiguously assigned by 1D and 2D NMR experiments (including NOESY). Full characterization of the novel skeletons with their NMR data and spectra are included in the Supporting Information.