Abstract
A chemo-enzymatic synthesis of 9-(β-d -arabinofuranosyl)-2-fluoroadenine
(Fludarabine) and 9-(β-d -arabinofuranosyl)-2-amino-6-methoxypurine
(Nelarabine) using α-d -arabinofuranose 1-phosphate
as a universal substrate and recombinant E.
coli purine nucleoside phosphorylase (PNP) as a biocatalyst
is described. MacDonald’s method was employed for the synthesis
of α-d -arabinofuranose 1-phosphate,
which was prepared as a mixture with β-d -arabinopyranose
1-phosphate, starting from peracyl derivatives of d -arabinose
of different isomeric (anomeric) composition. It was found that
the mixed phosphates can be successfully used in the reaction with
purine base catalyzed by PNP pointing to the inertia of β-d -arabinopyranose 1-phosphate in regard
to PNP. Reaction of 2-fluoroadenine and α-d -arabinofuranose
1-phosphate is shifted towards the formation of Fludarabine, whereas
the reaction of 2-amino-6-methoxypurine reached equilibrium at a
ca. equimolar ratio of the base and Nelarabine. Recombinant E. coli uridine phosphorylase catalyzed
the synthesis of 1-(β-d -arabinofuranosyl)thymine (ara-T)
from thymine and α-d -arabinofuranose
1-phosphate.
Key words
α-d -arabinofuranose 1-phosphate - recombinant E.coli nucleoside phosphorylases - purine nucleosides - ara-T
References
<A NAME="RT2211SS-1A">1a </A>
Mikhailopulo IA.
Curr. Org. Chem.
2007,
11:
317
<A NAME="RT2211SS-1B">1b </A>
Mikhailopulo IA.
Miroshnikov AI.
Acta
Naturae
2010,
2:
36
<A NAME="RT2211SS-1C">1c </A>
Mikhailopulo IA.
Miroshnikov AI.
Mendeleev
Commun.
2011,
21:
57
<A NAME="RT2211SS-2">2 </A>
Lewkowics ES.
Iribarren AM.
Curr. Org. Chem.
2006,
10:
1197
<A NAME="RT2211SS-3A">3a </A>
Ouwerkerk N.
van Boom JH.
Lugtenburg J.
Raap J.
Eur.
J. Org. Chem.
2000,
861
<A NAME="RT2211SS-3B">3b </A>
Ouwerkerk N.
Steenweg M.
De Ruijter M.
Brouwer J.
van Boom JH.
Lugtenburg J.
Raap J.
J. Org. Chem.
2002,
67:
1480
<A NAME="RT2211SS-4A">4a </A>
Ogawa J.
Saito K.
Sakai T.
Horinouchi N.
Kawano T.
Matsumoto S.
Sasaki M.
Mikami Y.
Shimizu S.
Biosci.,
Biotechnol., Biochem.
2003,
67:
933
<A NAME="RT2211SS-4B">4b </A>
Ishige T.
Honda K.
Shimizu S.
Curr.
Opin. Chem. Biol.
2005,
9:
174
<A NAME="RT2211SS-5A">5a </A>
Horinouchi N.
Ogawa J.
Kawano T.
Sakai T.
Saito K.
Matsumoto S.
Sasaki M.
Mikami Y.
Shimizu S.
Appl. Microbiol.
Biotechnol.
2006,
71:
615
<A NAME="RT2211SS-5B">5b </A>
Horinouchi N.
Ogawa J.
Kawano T.
Sakai T.
Saito K.
Matsumoto S.
Sasaki M.
Mikami Y.
Shimizu S.
Biosci.,
Biotechnol., Biochem.
2006,
70:
1371
<A NAME="RT2211SS-5C">5c </A>
Horinouchi N.
Ogawa J.
Kawano T.
Sakai T.
Saito K.
Matsumoto S.
Sasaki M.
Mikami Y.
Shimizu S.
Biotechnol.
Lett.
2006,
28:
877
<A NAME="RT2211SS-5D">5d </A>
Ogawa J.
New
Biotechnol.
2009,
26:
75
<A NAME="RT2211SS-6">6 </A>
Taverna-Porro M.
Bouvier LA.
Pereira CA.
Montserrat JM.
Iribarren AM.
Tetrahedron Lett.
2008,
49:
2642
<A NAME="RT2211SS-7A">7a </A>
Komatsu H.
Awano H.
J. Org. Chem.
2002,
67:
5419
<A NAME="RT2211SS-7B">7b </A>
Komatsu H.
Ikeda I.
Nucleosides, Nucleotides Nucleic Acids
2003,
22:
1685
<A NAME="RT2211SS-8">8 </A>
Komatsu H.
Araki T.
Tetrahedron Lett.
2003,
44:
2899
<A NAME="RT2211SS-9A">9a </A>
Komatsu H.
Awano H.
Ishibashi H.
Oikawa I.
Araki T.
Nucleic
Acids Symp. Ser.
2003,
3:
101
<A NAME="RT2211SS-9B">9b </A>
Komatsu H.
Araki T.
Nucleosides, Nucleotides Nucleic Acids
2005,
24:
1127
<A NAME="RT2211SS-10A">10a </A>
Yamada K.
Matsumoto N.
Hayakawa H.
Nucleic Acids Symp. Ser.
2004,
48:
45
<A NAME="RT2211SS-10B">10b </A>
Yamada K.
Matsumoto N.
Hayakawa H.
Nucleosides,
Nucleotides Nucleic Acids
2009,
28:
1117
<A NAME="RT2211SS-11">11 </A>
de Lederkremer RM.
Nahmad VB.
Varela O.
J. Org. Chem.
1994,
59:
690
<A NAME="RT2211SS-12">12 </A>
Euzen R.
Ferrieres V.
Plusquellec D.
J.
Org. Chem.
2005,
70:
847 ;
and references cited therein
<A NAME="RT2211SS-13">13 </A>
Hanessian S.
Lou B.
Chem. Rev.
2000,
100:
4443
<A NAME="RT2211SS-14A">14a </A>
MacDonald DL.
J. Org. Chem.
1962,
27:
1107
<A NAME="RT2211SS-14B">14b </A>
MacDonald DL.
Carbohydr. Res.
1966,
3:
117
<A NAME="RT2211SS-14C">14c </A>
MacDonald DL.
Carbohydr. Res.
1968,
6:
376
<A NAME="RT2211SS-14D">14d </A>
Mendicino J.
Hanna R.
J. Biol. Chem.
1970,
245:
6113
<A NAME="RT2211SS-14E">14e </A>
Chittenden GJF.
Carbohydr. Res.
1972,
25:
35
<A NAME="RT2211SS-15">15 </A>
Wright RS.
Khorana HG.
J. Am. Chem. Soc.
1958,
80:
1994 ; see also detailed discussion in this paper
<A NAME="RT2211SS-16">16 </A>
Maryanoff BE.
Reitz AB.
Nortey SO.
Tetrahedron
1988,
44:
3093
<A NAME="RT2211SS-17">17 </A>
Aspinall GO.
Cottrell IW.
Matheson NK.
Can. J. Biochem.
1972,
50:
574
<A NAME="RT2211SS-18">18 </A>
Kobayashi M.
Tetrahedron
2002,
58:
9365
<A NAME="RT2211SS-19">19 </A>
Hanessian S.
Lu P.-P.
Ishida H.
J.
Am. Chem. Soc.
1998,
120:
13296
<A NAME="RT2211SS-20">20 </A>
Plesner PE.
Klenow H.
Methods Enzymol.
1957,
3:
181
<A NAME="RT2211SS-21">21 </A>
Sokolov VM.
Rusavskaya TN.
Studentsov EP.
Zaharov VI.
Ivanov MA.
Sochilin EG.
Zh.
Obshch. Khim.
1981,
51:
946 ; Chem. Abstr . 1981 , 95 , 133270
<A NAME="RT2211SS-22">22 </A>
Kam BL.
Oppenheimer NJ.
Carbohydr. Res.
1979,
69:
308
<A NAME="RT2211SS-23">23 </A>
Bock K.
Pedersen C.
Carbohydr. Res.
1973,
29:
331
<A NAME="RT2211SS-24">24 </A>
Kam BL.
Barascut J.-L.
Imbach J.-L.
Carbohydr.
Res.
1979,
69:
135
<A NAME="RT2211SS-25">25 </A>
Lichtenthaler FW.
Breunig J.
Fischer W.
Tetrahedron Lett.
1971,
12:
2825
<A NAME="RT2211SS-26">26 </A>
It is noteworthy that a mixture of
the 1 α and 1 β furanosides¹5 is
unstable at r.t. giving rise to the formation of two new fractions
that have been isolated by silica gel column chromatography. One
of them consists of two triacetates (¹ H, ¹³ C
NMR). Detailed NMR analysis (¹ H, ¹³ C
NMR; COSY, HMBC, TOCSY, and NOE) along with the ab initio geometry
optimization (HyperChem, 8.1; in vacuo, basis set; 6-31G*)
of the relevant structures led us to conclusion that the major constituent
is 2,3,5-tri-O -acetyl-α-d -arabino-furanose and the minor is 2,3,4-tri-O -acetyl-β-d -arabino-pyranose.
The formation of the former as a byproduct was previously mentioned²² in
the transformation of methyl 2,3,5-tri-O -acetyl-α-d -arabinofuranoside into 1,2,3,5-tetra-O -acetyl-α-d -arabinofuranose
through the intermediate 1-bromide, however, no NMR data
was given. The other fraction consists of three (ca. 1:1:1 according
to ¹ H NMR) supposedly acyclic closely related
isomeric tetraacetates, the structures of which have not yet been
established.
<A NAME="RT2211SS-27">27 </A>
Asseline U.
Hau J.-F.
Czernecki S.
Diguarher T.
Perlat M.-C.
Valery J.-M.
Thuong NT.
Nucleic
Acids Res.
1991,
19:
4067
<A NAME="RT2211SS-28">28 </A>
Esipov RS.
Gurevich AI.
Chuvikovsky DV.
Chupova LA.
Muravyova TI.
Miroshnikov AI.
Protein
Expr. Purif.
2002,
24:
56
<A NAME="RT2211SS-29">29 </A>
Averett DR.
Koszalka GW.
Fyfe JA.
Roberts GB.
Purifoy DJ.
Krenitsky TA.
Antimicrob.
Agents Chemother.
1991,
35:
851
<A NAME="RT2211SS-30">30 </A>
Roivainen J.
Elizarova T.
Lapinjoki S.
Mikhailopulo IA.
Esipov RS.
Miroshnikov AI.
Nucleosides, Nucleotides
Nucleic Acids
2007,
26:
905
<A NAME="RT2211SS-31">31 </A>
Tintagel Ltd, 2nd Floor, Eton Tower,
8 Hysan Avenue, Causeway Bay, Hong Kong; Tel.: +852(2910)7843;
Fax: +852(2910)7844; E-mail: kacin@netvigator.com.
<A NAME="RT2211SS-32">32 </A>
Montgomery JA.
Hewson K.
J. Med. Chem.
1969,
12:
498
<A NAME="RT2211SS-33">33 </A>
Mikhailopulo IA.
Kalinichenko E. N.
Zaitseva G.
V.
Akhrem AA.
Biol.
Mass. Spectrom.
1982,
9:
225
<A NAME="RT2211SS-34">34 </A>
Chattopadhyaya J.
Reese C. B.
Synthesis
1978,
908
<A NAME="RT2211SS-35">35 </A>
Schinazi RF.
Chen M. S.
Prusoff WH.
J.
Med. Chem.
1979,
22:
1273