Subscribe to RSS
DOI: 10.1055/s-0030-1259943
Biomimetic Synthesis of (+)-Neroplofurol
Publication History
Publication Date:
07 April 2011 (online)

Abstract
(+)-Neroplofurol was biomimetically synthesized in only two steps from natural (+)-nerolidol via Sharpless dihydroxylation and a cascade Shi epoxidation/epoxide ring-opening reaction. All carbons are derived from natural (+)-nerolidol and no protecting groups were utilized, making the synthesis atom-economical and highly efficient. The synthetic neroplofurol was proved to be the enantiomer of the natural one, according to ¹H NMR, ¹³C NMR spectra and optical rotation value. The absolute configuration of natural neroplofurol was also deduced to be 3R,6S,7R,10S.
Key words
Sharpless dihydroxylation - Shi epoxidation - cascade reaction - atom economic - biomimetic synthesis
- Supporting Information for this article is available online:
               
               
- Supporting Information (PDF)
- For recent reviews, see:
- 1a 
             
            Li J.Vederas JC. Science 2009, 325: 161Reference Ris Wihthout Link
- 1b 
             
            Baker DD.Chu M.Oza U.Rajgarhia V. Nat. Prod. Rep. 2007, 24: 1225Reference Ris Wihthout Link
- 1c 
             
            Wilson RM.Danishefsky SJ. J. Org. Chem. 2006, 71: 8329Reference Ris Wihthout Link
- 1d 
             
            Newman DJ.Cragg GM.Snader KM. J. Nat. Prod. 2003, 66: 1022Reference Ris Wihthout Link
- 1e 
             
            Itokawa H.Morris SL.Akiyama T.Lee KH. J. Nat. Med. 2008, 62: 263Reference Ris Wihthout Link
- 1f 
             
            Rishton GM. Am. J. Cardiol. 2008, 101: 43DReference Ris Wihthout Link
- 2a For
            an excellent review on natural products and biosynthesis, see:  
            Dewick PM. Medicinal Natural Products: A Biosynthetic Approach Wiley; New York: 2002.Reference Ris Wihthout Link
- 2b 
             
            Stefan B.Andreas J.Gerd G.Wilhelm B. Phytochemistry 2006, 67: 1661Reference Ris Wihthout Link
- 2c 
             
            Eisenreich W.Bacher A.Arigoni D.Rohdich F. Cell. Mol. Life Sci. 2004, 61: 1401Reference Ris Wihthout Link
- 2d 
             
            Tanja R.Felix R.Juraithip W.Stefan H.Klaus K.Wolfgang E.Adelbert B.Meinhart HZ.Duilio A. FEBS Lett. 2000, 465: 157Reference Ris Wihthout Link
- 2e 
             
            Mitsuo M.Hitokazu N.Hiromu K. J. Agric. Food Chem. 1996, 44: 1543Reference Ris Wihthout Link
- 2f 
             
            Abraham WR.World J. Microbiol. Biotechnol. 1993, 9: 319Reference Ris Wihthout Link
- 3 
             
            Taichi I.Wang YH.David CS.Guido FP. J. Nat. Prod. 2010, 73: 563
- 4a 
             
            Abraham WR. World J. Microbiol. Biotechnol. 1993, 9: 319Reference Ris Wihthout Link
- 4b  
            Abraham, W. R. Braunschweig, Germany. Unpublished work, 2007. Reference Ris Wihthout Link
- 5a 
             
            Zhang JY.Li Y.Wang WK.She XG.Pan XF. J. Org. Chem. 2006, 71: 2918Reference Ris Wihthout Link
- 5b 
             
            Xu YF.Huo X.Li XY.Zheng HJ.She XG.Pan XF. Synlett 2008, 1665Reference Ris Wihthout Link
- 5c 
             
            Su YP.Xu YF.Han JJ.Zheng JY.Qi J.Jiang T.Pan XF.She XG. J. Org. Chem. 2009, 74: 2743Reference Ris Wihthout Link
- 5d 
             
            Wang XL.Wang WK.Zheng HJ.Su YP.Jiang T.He YP.She XG. Org. Lett. 2009, 11: 3136Reference Ris Wihthout Link
- 5e 
             
            Wang QL.Huang QG.Chen B.Lu JP.Wang H.She XG.Pan XF. Angew. Chem. Int. Ed. 2006, 45: 3651Reference Ris Wihthout Link
- 6a 
             
            Xiong ZM.Busch R.Corey EJ. Org. Lett. 2010, 12: 1512Reference Ris Wihthout Link
- 6b 
             
            Lydia C.Stanley MR. J. Chem. Soc., Perkin Trans. 1 2000, 2455Reference Ris Wihthout Link
- 6c 
             
            Xiong ZM.Corey EJ. J. Am. Chem. Soc. 2000, 122: 4831Reference Ris Wihthout Link
- 6d 
             
            Xiong ZM.Corey EJ. J. Am. Chem. Soc. 2000, 122: 9328Reference Ris Wihthout Link
- 7 
             
            Wang ZX.Tu Y.Michael F.Zheng JR.Shi YA. J. Am. Chem. Soc. 1997, 119: 11224
- 9 
             
            Sharpless KB.Amberg W.Bennani YL.Crispino GA.Hartung J.Jeong KS.Kwong HL.Morikawa K.Wang ZM. J. Org. Chem. 1992, 57: 2768Reference Ris Wihthout Link
- 10 
             
            Xiong ZM.Corey EJ. J. Am. Chem. Soc. 2000, 122: 4831
References and Notes
(-)-Nerolidol was purchased from Sanming Meilie Perfumery Factory, Fuzhou City, Fujian Province; [α]D 25 +12.
11Spectral data of the target compound:
         (+)-neroplofurol (1): [α]²5
         D +20
         (c = 0.1, MeOH). ¹H
         NMR (400 MHz, CDCl3): 
δ = 1.11
         (s, 3 H), 1.13 (s, 3 H), 1.25 (s, 3 H), 1.27 (s, 3 H), 1.35 (m,
         1 H), 1.48 (m, 1 H), 1.53 (dddd, J = 14.0,
         7.2, 7.2, 2.0 Hz, 1 H), 1.66 (ddd, J = 14.4,
         7.2, 7.2 Hz, 1 H), 1.78 (ddd, J = 14,2,
         7.0, 6.9 Hz, 1 H), 1.90 (m, 2 H), 2.10 (ddd, J = 2.4, 6.0,
         12.5 Hz, 1 H), 3.54 (dd, J = 10.8,
         2.0 Hz, 1 H), 3.79 (dd, J = 7.6,
         7.2 Hz, 1 H), 5.04 (dd, J = 10.8,
         1.2 Hz, 1 H), 5.21 (dd, J = 17.6,
         1.6 Hz, 1 H), 5.84 (dd, J = 17.6,
         10.8 Hz, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 23.86,
         25.56, 26.37, 26.95, 27.61, 28.85, 31.32, 39.34, 72.08, 72.91, 77.86,
         84.41, 86.46, 112.04, 145.02. IR (solid): 3375, 2971, 1374, 1082 cm-¹.
         HRMS (ESI): m/z [M + Na]+ calcd
         for C15H28O4Na: 295.1885; found:
         295.1884.
         Representative
            Experimental Procedure: A solution of AD-mix-β (1.4
         g), in t-BuOH-H2O
         (5:5, 10 mL) was cooled at 0 ˚C. Stirring the mixture at
         r.t. produced two clear phases; then the methanesulfonamide (95
         mg) was added. After stirring for 5 min at 0 ˚C, the olefin 3 (232 mg, 1 mmol) was added in one portion.
         The reaction mixture was stirred at 0 ˚C for 24 h and then
         quenched with solid sodium sulfite (1.5 g). The stirring was continued
         for 45 min, and the solution was extracted with EtOAc (3 × 20
         mL). The combined organic phases were washed (2 N KOH), treated
         with brine, dried (MgSO4), and concentrated. After a
         short silica gel chromatography, the crude product was then dissolved
         in MeCN-dimethoxymethane mixture (30 mL, 1:2). A buffer solution
         (0.5 M solution of Na2B4O7˙10H2O
         in 4 × 10-4 aq Na2EDTA,
         20 mL), Bu4NHSO4 (20 mg) and Shi’s
         catalyst 6 (180 mg) were added subsequently
         to the solution. The mixture was cooled to 0 ˚C. A solution
         of Oxone (560 mg) in aq Na2 
         (EDTA) (4 × 10-4 M,
         13 mL) and K2CO3 (13 mmol) in H2O
         (13 mL) were added separately over a period of 1 h (using syringe
         pumps) dropwise to the mixture. After the additions were done, the
         mixture was stirred for an addi-
tional 30 min at 0 ˚C,
         diluted with H2O, and extracted with EtOAc (3 × 60
         mL). The combined organic layer was washed with brine, and dried
         over Na2SO4. The product was purified by flash
         chromatography on silica gel; yield: 176 mg, 0.6 mmol, 60%.
 
    