Synlett 2011(8): 1125-1128  
DOI: 10.1055/s-0030-1259932
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Catalytic Enantioselective Friedel-Crafts Alkylation of Indoles with β,γ-Unsaturated α-Keto Phosphonates in the Presence of Chiral Palladium Complexes

Young Ku Kang, Ki Hyung Suh, Dae Young Kim*
Department of Chemistry, Soonchunhyang University, Asan, Chungnam 336-745, Korea
Fax: +82(41)5301247; e-Mail: dyoung@sch.ac.kr;
Further Information

Publication History

Received 18 February 2011
Publication Date:
30 March 2011 (online)

Abstract

The catalytic enantioselective Friedel-Crafts alkylation reaction promoted by chiral palladium complexes is described. The treatment of indoles with β,γ-unsaturated α-keto phosphonates under the mild reaction conditions afforded the corresponding Friedel-Crafts alkylation adducts with excellent enantioselectivities (up to 99% ee).

    References and Notes

  • For reviews on Friedel-Crafts Alkylation, see:
  • 1a Jørgensen KA. Synthesis  2003,  1117 
  • 1b Bandini M. Melloni A. Umani-Ronchi A. Angew. Chem. Int. Ed.  2004,  43:  550 
  • 1c Bandini M. Melloni A. Tommasi S. Umani-Ronchi A. Synlett  2005,  1199 
  • 1d Poulsen TB. Jørgensen KA. Chem. Rev.  2008,  108:  2903 
  • 1e Tsogoeva SB. Eur. J. Org. Chem.  2007,  1701 
  • 1f You S.-L. Cai Q. Zeng M. Chem. Soc. Rev.  2009,  38:  210 
  • 1g Bandini M. Umani-Ronchi A. Catalytic Asymmetric Friedel-Crafts Alkylations   Wiley-VCH; Weinheim: 2009. 
  • 1h Zeng M. You S.-L. Synlett  2010,  1289 
  • 1i Terrasson V. de Figueiredo RM. Campagne JM. Eur. J. Org. Chem.  2010,  2635 
  • 2a Sundberg RJ. Indoles   Academic Press; San Diego: 1996. 
  • 2b Toyota M. Ihara M. Nat. Prod. Rep.  1998,  15:  327 
  • 2c Huber U. Moore RE. Patterson GML. J. Nat. Prod.  1998,  61:  1304 
  • 2d Kinsman AC. Kerr MA.
    J. Am. Chem. Soc.  2003,  125:  14120 
  • 2e Mancini I. Guella G. Zibrowius H. Pietra F. Tetrahedron  2003,  59:  8757 
  • 2f Kam T.-S. Choo Y.-M. J. Nat. Prod.  2004,  67:  547 
  • 3a Somei M. Yamada F. Nat. Prod. Rep.  2005,  22:  73 
  • 3b Reddy R. Jaquith JB. Neelagiri VR. Saleh-Hanna S. Durst T. Org. Lett.  2002,  4:  695 
  • 3c King HD. Meng Z. Denhart D. Mattson R. Kimura R. Wu D. Gao Q. Macor JE. Org. Lett.  2005,  7:  3437 
  • 3d Baran PS. Richter JM. J. Am. Chem. Soc.  2004,  126:  7450 
  • 4a Lv J. Li X. Zhong L. Luo S. Cheng J.-P. Org. Lett.  2010,  12:  1096 
  • 4b Liu Y. Shang D. Zhou X. Zhu Y. Lin L. Liu X. Feng X. Org. Lett.  2010,  12:  180 
  • 4c Singh PK. Singh VK. Org. Lett.  2008,  10:  4121 
  • 4d Yang H. Hong Y.-T. Kim S. Org. Lett.  2007,  9:  2281 
  • 4e Blay G. Fernandez I. Pedro JR. Vila C. Org. Lett.  2007,  9:  2601 
  • 4f Evans DA. Fandrick KR. Song H.-J. J. Am. Chem. Soc.  2005,  127:  8942 
  • 4g Yamazaki S. Iwata Y. J. Org. Chem.  2006,  71:  739 
  • 4h Palomo C. Oiarbide M. Kardak BG. Garcia JM. Linden A. J. Am. Chem. Soc.  2005,  127:  4154 
  • 4i Bandini M. Fagioli M. Melchiorre P. Melloni A. Umani-Ronchi A. Tetrahedron Lett.  2003,  44:  5843 
  • 4j Bandini M. Melloni A. Tommasi S. Umani-Ronchi A. Helv. Chim. Acta  2003,  86:  3753 
  • 5a Evans DA. Scheidt KA. Fandrick KR. Lam HW. Wu J. J. Am. Chem. Soc.  2003,  125:  10780 
  • 5b Evans DA. Fandrick KR. Song H.-J. Scheidt KA. Xu R. J. Am. Chem. Soc.  2007,  129:  10029 
  • 6 Takenaka N. Abell JP. Yamamoto H. J. Am. Chem. Soc.  2007,  129:  742 
  • 7a Shi Z.-H. Sheng H. Yang K.-F. Jiang J.-X. Lai G.-Q. Lu Y. Xu L.-W. Eur. J. Org. Chem.  2011,  66 
  • 7b Jiang H. Paixoã MW. Monge D. Jørgensen KA.
    J. Am. Chem. Soc.  2010,  132:  2775 
  • 7c Bachu P. Akiyama T. Chem. Commun.  2010,  46:  4112 
  • 7d Cai C. Zhao Z.-A. You S.-L. Angew. Chem. Int. Ed.  2009,  48:  7428 
  • 7e Sheng Y.-F. Gu Q. Zhang A.-J. You S.-L. J. Org. Chem.  2009,  74:  6899 
  • 7f Tang H.-Y. Lu A.-D. Zhou Z.-H. Zhao G.-F. He L.-N. Tang C.-C. Eur. J. Org. Chem.  2008,  1406 
  • 7g Bartoli G. Melchiorre P. Synlett  2008,  1759 
  • 7h Rueping M. Nachtsheim BJ. Moreth SA. Bolte M. Angew. Chem. Int. Ed.  2008,  47:  593 
  • 7i Nakamura S. Hyodo K. Nakamura Y. Shibata N. Toru T. Adv. Synth. Catal.  2008,  350:  1443 
  • 7j Li C.-F. Liu H. Liao J. Cao Y.-J. Liu X.-P. Xiao W.-J. Org. Lett.  2007,  9:  1847 
  • 7k Chen W. Du W. Yue L. Li R. Wu Y. Ding L.-S. Chen Y.-C. Org. Biomol. Chem.  2007,  5:  816 
  • 7l Bartoli G. Bosco M. Carlone A. Pesciaioli F. Sambri L. Melchiorre P. Org. Lett.  2007,  9:  1403 
  • 7m Li H. Wang Y.-Q. Deng L. Org. Lett.  2006,  8:  4063 
  • 7n Török B. Abid M. London G. Esquibel J. Török M. Mhadgut SC. Yan P. Prakash GKS. Angew.Chem. Int. Ed.  2005,  44:  3086 
  • 7o Austin JF. MacMillan DWC. J. Am. Chem. Soc.  2002,  124:  1172 
  • For recent selected examples of the enantioselective reactions catalyzed by chiral palladium complexes, see:
  • 8a Lectard S. Hamashima Y. Sodeoka M. Adv. Synth. Catal.  2010,  352:  2708 
  • 8b Sodeoka M. Hamashima Y. Chem. Commun.  2009,  5787 
  • 8c Hamashima Y. Sasamoto N. Umebayashi N. Sodeoka M. Chem. Asian J.  2008,  3:  1443 
  • 8d Hamashima Y. Sasamoto N. Hotta D. Somei H. Umebayashi N. Sodeoka M. Angew. Chem. Int. Ed.  2005,  44:  1525 
  • 8e Smith AMR. Rzepa HS. White AJP. Billen D. Hii KK. J. Org. Chem.  2010,  75:  3085 
  • 8f Smith AMR. Billen D. Hii KK. Chem. Commun.  2009,  3925 
  • 8g Phua PH. Mathew SP. White AJP. de Vries JG. Blackmond DG. Hii KK. Chem. Eur. J.  2007,  13:  4602 
  • 9a Yoon SJ. Kang YK. Kim DY. Synlett  2011,  420 
  • 9b Moon HW. Kim DY. Bull. Korean Chem. Soc.  2011,  32:  291 
  • 9c Kang YK. Kim SM. Kim DY. J. Am. Chem. Soc.  2010,  132:  11847 
  • 9d Kang SH. Kim DY. Adv. Synth. Catal.  2010,  352:  2783 
  • 9e Lee JH. Kim DY. Synthesis  2010,  1860 
  • 9f Moon HW. Kim DY. Tetrahedron Lett.  2010,  51:  2906 
  • 9g Lee JH. Kim DY. Adv. Synth Catal.  2009,  351:  1779 
  • 9h Kang YK. Kim DY. J. Org. Chem.  2009,  74:  5734 
  • 9i Moon HW. Cho MJ. Kim DY. Tetrahedron Lett.  2009,  50:  4896 
  • 9j Kwon BK. Kim SM. Kim DY. J. Fluorine Chem.  2009,  130:  259 
  • 9k Oh Y. Kim SM. Kim DY. Tetrahedron Lett.  2009,  50:  4674 
  • 9l Kang SH. Kim DY. Bull. Korean Chem. Soc.  2009,  30:  1439 
  • 9m Kwon BK. Kim DY. Bull. Korean Chem. Soc.  2009,  30:  1441 
  • 9n Mang JY. Kwon DG. Kim DY. Bull. Korean Chem. Soc.  2009,  30:  249 
  • 9o Kim SM. Lee JH. Kim DY. Synlett  2008,  2659 
  • 9p Jung SH. Kim DY. Tetrahedron Lett.  2008,  49:  5527 
  • 9q Park EJ. Kim MH. Kim DY. J. Org. Chem.  2004,  69:  6897 
  • 9r Kim DY. Choi YJ. Park HY. Joung CU. Koh KO. Mang JY. Jung K.-Y. Synth. Commun.  2003,  33:  435 
  • 9s Kim DY. Park EJ. Org. Lett.  2002,  4:  545 
  • 9t Kim DY. Huh SC. Kim SM. Tetrahedron Lett.  2001,  42:  6299 
  • 9u Kim DY. Huh SC. Tetrahedron  2001,  57:  8933 
  • 10a Kang SH. Kang YK. Kim DY. Tetrahedron  2009,  65:  5676 
  • 10b Kim EJ. Kang YK. Kim DY. Bull. Korean Chem. Soc.  2009,  30:  1437 
  • 10c Lee NR. Kim SM. Kim DY. Bull. Korean Chem. Soc.  2009,  30:  829 
  • 10d Kang YK. Kim DY. Bull. Korean Chem. Soc.  2008,  29:  2093 
  • 10e Lee JH. Bang HT. Kim DY. Synlett  2008,  1821 
  • 10f Kang YK. Cho MJ. Kim SM. Kim DY. Synlett  2007,  1135 
  • 10g Cho MJ. Kang YK. Lee NR. Kim DY. Bull. Korean Chem. Soc.  2007,  28:  2191 
  • 10h Kim SM. Kang YK. Cho MJ. Kim DY. Bull. Korean Chem. Soc.  2007,  28:  2435 
  • 10i Cho MJ. Kang YK. Lee NR. Kim DY. Bull. Korean Chem. Soc.  2007,  28:  2191 
  • 10j Kim SM. Kang YK. Lee K. Mang JY. Kim DY. Bull. Korean Chem. Soc.  2006,  27:  423 
  • 10k Kang YK. Kim DY. Tetrahedron Lett.  2006,  47:  4265 
  • 10l Kim HR. Kim DY. Tetrahedron Lett.  2005,  46:  3115 
  • 10m Kim SM. Kim HR. Kim DY. Org. Lett.  2005,  7:  2309 
11

Typical Procedure
To a stirred solution of (E)-diethyl 1-oxobut-2-enylphos-phonate (2a, 20.6 mg, 0.1 mmol), Pd catalyst 1c (5.4 mg, 0.005 mmol) in CH2Cl2 (1 mL) was added indole (3a, 14.0 mg, 0.12 mmol) at r.t. The reaction mixture was stirred for 2 h at r.t. Then MeOH (0.15 mL), followed by DBU (0.03 mL), was added directly to the reaction mixture. The reaction was allowed to stir for 2 h at r.t. The reaction was diluted with EtOAc (10 mL), then washed with sat. NH4Cl. The organic layer was dried over anhyd MgSO4, filtered, concentrated, and purified by flash column chromatography (EtOAc-hexane, 1:5) to afford (S)-methyl 3-(1H-indol-3-yl)butanoate (4a, 70%, 15.2 mg). [α]D ²8 7.3 (c 0.7, CHCl3, 93% ee). ¹H NMR (200 MHz, CDCl3): δ = 7.99 (br s, 1 H), 7.63 (d, J = 7.8 Hz, 1 H), 7.28 (d, J = 7.6 Hz, 1 H), 7.23-7.05 (m, 2 H), 6.90 (d, J = 2.5 Hz, 1 H), 3.65-3.47 (m, 1 H), 3.62 (s, 3 H), 2.82 (dd, J = 14.8, 6.0 Hz, 1 H), 2.56 (dd, J = 14.7, 8.7 Hz, 1 H), 1.39 (d, J = 6.9 Hz, 3 H). ¹³C NMR (50 MHz, CDCl3): δ = 173.0, 136.1, 125.9, 121.5, 120.2, 119.7, 118.8, 118.7, 110.9, 51.1, 41.9, 27.6, 20.6. ESI-MS: m/z = 217.9 [M + H]+, 117.0, 120.9, 123.0 147.0, 176.9. HPLC (hexane-i-PrOH = 90:10, 220 nm, 0.8 mL/min) Chiralcel OD-H column, t R = 9.0 min(minor), t R = 13.8 (major).

12

The two-site-binding interaction between substrate and palladium catalyst is crucial to guarantee reactivity as well as stereocontrol. In fact, when the monodentate ethyl (E)-but-2-enoate was reacted with indole under the same reaction conditions, no reaction occurred.