References and Notes
<A NAME="RD31410ST-1A">1a</A>
Horton DA.
Bourne GT.
Smythe ML.
Chem.
Rev.
2003,
103:
893
<A NAME="RD31410ST-1B">1b</A>
Bringmann G.
Gunther C.
Ochse M.
Schupp O.
Tasler S.
Biaryls
in Nature: A Multi-Facetted Class of Stereochemically, Biosynthetically,
and Pharma-cologically Intriguing Secondary Metabolites, In Progress in
the Chemistry of Organic Natural Products
Vol. 82:
Herz W.
Falk H.
Kirby GW.
Moore RE.
Springer-Verlag;
New
York:
2001.
<A NAME="RD31410ST-1C">1c</A>
Hajduk PJ.
Bures M.
Praestgaard J.
Fesik SW.
J.
Med. Chem.
2000,
43:
3443
<A NAME="RD31410ST-1D">1d</A>
Bemis GW.
Murcko MA.
J.
Med. Chem.
1996,
39:
2887
<A NAME="RD31410ST-2A">2a</A>
Schmidt U.
Leitenberger V.
Griesser H.
Schmidt J.
Meyer R.
Synthesis
1992,
1248
<A NAME="RD31410ST-2B">2b</A>
Schmidt U.
Meyer R.
Leitenberger V.
Griesser H.
Lieberknecht A.
Synthesis
1992,
1025
<A NAME="RD31410ST-3A">3a</A>
Markham A.
Goa KL.
Drugs
1997,
54:
299
<A NAME="RD31410ST-3B">3b</A>
Croom KF.
Keating GM.
Am.
J. Cardiovasc. Drugs
2004,
4:
395
<A NAME="RD31410ST-3C">3c</A>
Sharpe M.
Jarvis B.
Goa KL.
Drugs
2001,
61:
1501
<A NAME="RD31410ST-3D">3d</A>
Yusuf S.
Am.
J. Cardiol.
2002,
89:
18A
<A NAME="RD31410ST-4">4</A>
Matheron ME.
Porchas M.
Plant Dis.
2004,
88:
665
<A NAME="RD31410ST-5">5</A>
Poetsch E.
Kontakte
1988,
2:
15
<A NAME="RD31410ST-6A">6a</A>
Miyaura N.
Yamada K.
Suzuki A.
Tetrahedron Lett.
1979,
3437
<A NAME="RD31410ST-6B">6b</A>
Stanforth SP.
Tetrahedron
1998,
54:
263
<A NAME="RD31410ST-6C">6c</A>
Suzuki A.
Pure
Appl. Chem.
1991,
63:
419
<A NAME="RD31410ST-6D">6d</A>
Wolfe JP.
Buchwald SP.
Angew.
Chem. Int. Ed.
1999,
38:
2413
<A NAME="RD31410ST-6E">6e</A>
Zapf A.
Beller M.
Chem. Eur. J.
2000,
6:
1830
<A NAME="RD31410ST-6F">6f</A>
Bedford RB.
Cazin CSJ.
Coles SJ.
Gelbrich T.
Horton PN.
Hursthouse MB.
Light ME.
Organometallics
2003,
22:
987
<A NAME="RD31410ST-7A">7a</A>
Baba S.
Negishi E.
J.
Am. Chem. Soc.
1976,
98:
6729
<A NAME="RD31410ST-7B">7b</A>
Dai C.
Fu GC.
J. Am. Chem. Soc.
2001,
123:
2719
<A NAME="RD31410ST-8A">8a</A>
Tamao K.
Sumitani K.
Kumada M.
J. Am. Chem. Soc.
1972,
94:
4374
<A NAME="RD31410ST-8B">8b</A>
Herrmann WA.
Bohm VPW.
Reisinger C.
J. Organomet. Chem.
1999,
576:
23
<A NAME="RD31410ST-9A">9a</A>
Hatanaka Y.
Hiyama T.
J.
Org. Chem.
1988,
53:
920
<A NAME="RD31410ST-9B">9b</A>
Gouda K.
Hagiwara E.
Hatanaka Y.
Hiyama T.
J. Org. Chem.
1996,
61:
7232
<A NAME="RD31410ST-9C">9c</A>
Mowery ME.
DeShong P.
Org. Lett.
1999,
1:
2137
<A NAME="RD31410ST-9D">9d</A>
Lee J.
Fu GC.
J. Am. Chem. Soc.
2003,
125:
5616
<A NAME="RD31410ST-9E">9e</A>
Riggleman S.
Deshong P.
J. Org. Chem.
2003,
68:
8106
<A NAME="RD31410ST-9F">9f</A>
Lee HM.
Nolan SP.
Org. Lett.
2000,
2:
2053
<A NAME="RD31410ST-10A">10a</A>
Stille JK.
Pure Appl. Chem.
1985,
57:
1771
<A NAME="RD31410ST-10B">10b</A>
Stille JK.
Angew. Chem., Int. Ed. Engl.
1986,
25:
508
<A NAME="RD31410ST-10C">10c</A>
Farina V.
Krishnamurthy V.
Scott WJ.
Org.
React. (N.Y.)
1997,
50:
1
<A NAME="RD31410ST-10D">10d</A>
Hassa J.
Svignon M.
Gozzi C.
Schulz E.
Lemaire M.
Chem.
Rev.
2002,
102:
1359
<A NAME="RD31410ST-10E">10e</A>
Littke AF.
Fu GC.
Angew.
Chem. Int. Ed.
2002,
41:
4176
<A NAME="RD31410ST-11A">11a</A>
Hagiwara E.
Gouda K.
Hatanaka Y.
Hiyama T.
Tetrahedron
Lett.
1997,
38:
439
<A NAME="RD31410ST-11B">11b</A>
Murata M.
Shimazaki R.
Watanabe S.
Masuda Y.
Synthesis
2001,
2231
<A NAME="RD31410ST-12A">12a</A>
Wolf C.
Lerebours R.
Org.
Lett.
2004,
6:
1147
<A NAME="RD31410ST-12B">12b</A>
Gordillo A.
Jesus E.
Lopez-Mardomingo C.
Org.
Lett.
2006,
8:
3517
<A NAME="RD31410ST-13A">13a</A>
Shi S.
Zhang Y.
J.
Org. Chem.
2007,
72:
5927
<A NAME="RD31410ST-13B">13b</A>
Ranu BC.
Dey R.
Chattopadhyay K.
Tetrahedron Lett.
2008,
49:
3430
<A NAME="RD31410ST-13C">13c</A>
Huang T.
Li CJ.
Tetrahedron Lett.
2002,
43:
403
<A NAME="RD31410ST-13D">13d</A>
Srimani D.
Sawoo S.
Sarkar A.
Org.
Lett.
2007,
9:
3639
<A NAME="RD31410ST-13E">13e</A>
Alacid E.
Najera C.
Adv. Synth. Catal.
2006,
348:
945
<A NAME="RD31410ST-13F">13f</A>
Alacid E.
Najera C.
Adv. Synth. Catal.
2006,
348:
2085
<A NAME="RD31410ST-14A">14a</A>
Yavuz CT.
Mayo JT.
Yu WW.
Prakash A.
Falkner JC.
Yean S.
Cong LL.
Shipley HJ.
Kan A.
Tomson M.
Natelson D.
Colvin VL.
Science
2006,
314:
964
<A NAME="RD31410ST-14B">14b</A>
Sun SH.
Murray CB.
Weller D.
Folks L.
Moser A.
Science
2000,
287:
1989
<A NAME="RD31410ST-14C">14c</A>
Gao J.
Zhang W.
Huang P.
Zhang B.
Zhang X.
Xu B.
J.
Am. Chem. Soc.
2008,
130:
3710
<A NAME="RD31410ST-14D">14d</A>
Lu J.
Yang SH.
Ng KM.
Su
CH.
Yeh CS.
Wu YN.
Shieh DB.
Nanotechnology
2006,
17:
5812
<A NAME="RD31410ST-14E">14e</A>
Li Z.
Wei L.
Gao M.
Lei H.
Adv. Mater. (Weinheim, Ger.)
2005,
17:
1001
<A NAME="RD31410ST-14F">14f</A>
Yu MK.
Jeong YY.
Park J.
Park S.
Kim JW.
Min JJ.
Kim K.
Jon S.
Angew. Chem. Int. Ed.
2008,
47:
5362
<A NAME="RD31410ST-15A">15a</A>
Roca AG.
Morales MP.
O’Grady K.
Serna CJ.
Nanotechnology
2006,
17:
783
<A NAME="RD31410ST-15B">15b</A>
Zheng YH.
Cheng Y.
Bao F.
Wang YS.
Mater. Res. Bull.
2006,
41:
525
<A NAME="RD31410ST-15C">15c</A>
Lang C.
Schueler D.
Faivre D.
Macromol.
Biosci.
2007,
7:
144
<A NAME="RD31410ST-15D">15d</A>
Majewski P.
Thierry B.
Crit. Rev. Solid State Mater.
Sci.
2007,
32:
203
<A NAME="RD31410ST-16">16</A>
Sreedhar B.
Kumar AS.
Reddy PS.
Tetrahedron
Lett.
2010,
51:
1891
<A NAME="RD31410ST-17">17</A>
Liu J.
Peng X.
Sun W.
Zhao Y.
Xia C.
Org. Lett.
2008,
10:
3933
<A NAME="RD31410ST-18">18</A>
Metal Catalyzed Cross-Coupling
Reactions
Diederich F.
de Mejiere A.
John Wiley & Sons;
New
York:
2004.
<A NAME="RD31410ST-19">19</A>
Synthesis of the
Fe
3
O
4
nanoparticles:
FeSO4˙7H2O (13.9 g) and Fe2
(SO4)3 (20
g) were dissolved in H2O (500 mL) in a 1000 mL beaker.
NH4OH (aq, 25%) was added slowly to adjust the
pH of the solution to 10. The reaction mixture was then continually
stirred for 1 h at 60 ˚C. The precipitated nanoparticles
were separated magnetically, washed with water until the pH 7,
and then dried under vacuum at 60 ˚C for 2 h.
This magnetic nano ferrite (Fe3O4) was then
used for the preparation of Pd/Fe3O4.
Synthesis of the Pd/Fe
3
O
4
catalyst:
Fe3O4 nanoparticles were impregnated with
Na2PdCl4 (1.0%) aqueous solution and
stirred for 1 h. After impregnation, the suspension was adjusted
to pH 12 by adding NaOH (1 M) and stirred for 6 h. The
solid was washed with distilled H2O. The catalyst precursors
were reduced by adding 0.2 M NaBH4 solution dropwise
under gentle stirring in an ice-water bath for 30 min
until no obvious bubbles were observed in the solution. The resulting
Pd/Fe3O4 was washed thoroughly with
distilled H2O and subsequently with EtOH. The palladium
content in the catalyst was measured as 0.023 mmol˙g-¹ using
ICP-AES.
General procedure for the
Hiyama reaction: A mixture
of aryl bromide (1 mmol),
aryl siloxane (1.2 mmol), NaOH (3 mmol), Pd/Fe3O4 catalyst
(50 mg, 0.2 mol% of Pd) and distilled H2O (3
mL) was taken in a round-bottomed flask and stirred at 90 ˚C
for 6 h. After completion of the reaction (monitored by
TLC) the catalyst was easily separated from the reaction mixture
with an external magnet. After removing the solvent, the crude material
was purified by chromatography on silica gel to afford the pure
product. The spectroscopic data of all known compounds were identical
to those reported in the literature.
2′-Methoxy-4-methylbiphenyl (Table
[²]
, entry 8): ¹H
NMR (300 MHz, CDCl3): δ = 2.35 (s,
3 H), 3.78 (s, 3 H), 6.88-6.99 (m, 2 H),
7.22-7.28 (m, 2 H), 7.15 (d, J = 8.0
Hz, 2 H), 7.35 (d, J = 8.0 Hz,
2 H). ¹³C NMR (75 MHz, CDCl3): δ = 21.1,
55.4, 111.1, 120.7, 128.3, 128.6, 129.3, 130.7, 131.4, 131.5, 136.4,
156.4. MS (EI): m/z = 198 [M]+.
4′-Methoxy-2,4,6-trimethylbiphenyl (Table
[²]
, entry 16): ¹H
NMR (300 MHz, CDCl3): δ = 2.03 (s,
6 H), 2.35 (s, 3 H), 3.86 (s, 3 H), 6.95
(s, 2 H), 7.07 (d, J = 8.6 Hz,
2 H), 7.49 (d, J = 8.6 Hz, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 20.7, 20.9, 55.2,
113.7, 127.9, 130.3, 133.2, 136.4, 138.6, 158.1. MS (EI): m/z = 226 [M]+.
4′-tert-Butyl-2,4,6-trimethylbiphenyl (Table
[²]
, entry 17): ¹H
NMR (300 MHz, CDCl3): δ = 1.39 (s,
9 H), 1.98 (s, 6 H), 2.30 (s, 3 H), 6.85
(s, 2 H), 7.01 (d, J = 8.3 Hz,
2 H), 7.41 (d, J = 8.3 Hz, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 20.8, 27.0, 31.3,
34.4, 125.6, 126.6, 127.9, 128.8, 136.2, 138.2, 149.8. MS (EI):
m/z = 252 [M]+.
1-p-Tolylnaphthalene (Table
[²]
, entry 18): ¹H
NMR (300 MHz, CDCl3): δ = 2.45 (s,
3 H), 7.25 (d, J = 8.3 Hz, 2 H), 7.33-7.38
(m, 3 H), 7.39-7.49 (m, 3 H), 7.77-7.92
(m, 3 H). ¹³C NMR (75 MHz,
CDCl3): δ = 21.2, 125.3, 125.6, 125.8, 126.0,
126.8, 127.4, 128.2, 128.9, 129.9, 131.6, 133.7, 136.8, 137.7, 140.2.
MS (ESI): m/z = 218 [M]+.