Synlett 2011(7): 982-988  
DOI: 10.1055/s-0030-1259722
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Halopalladation Cyclization of Alkynes with Azides: Selective Synthesis of 4-Haloisoquinolines and 3-Haloindoles

Hong-Ping Zhanga,b, Shang-Ci Yua, Yun Lianga, Peng Penga, Bo-Xiao Tanga, Jin-Heng Li*a
a Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, P. R. of China
Fax: +86(731)88872101; e-Mail: jhli@hunnu.edu.cn;
b Department of Biology and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. of China
Further Information

Publication History

Received 8 August 2010
Publication Date:
10 March 2011 (online)

Abstract

A new, selective method for the synthesis of 4-haloisoquinolines and 3-haloindoles is presented by the halopalladation cyclizations of alkynes with azides. In the presence of PdX2 (X = Br, Cl) and halide sources, a variety of 2-alkynyl benzyl azides or 2-alkynyl aryl azides smoothly underwent the halopalladation ­cyclization reaction to afford the corresponding 3-substituted 4-­haloisoquinolines and 2-substituted 3-haloindoles in moderate to good yields.

    References and Notes

  • 1a The Chemistry of Heterocyclic Compounds: Isoquinolines   Vol. 38, Part 3:  Coppola GM. Schuster HF. John Wiley & Sons; New York: 1981. 
  • 1b Bentley KW. The Isoquinoline Alkaloids   Vol. 1:  Harwood Academic; Amsterdam: 1998. 
  • 1c Bentley KW. Nat. Prod. Rep.  2005,  22:  249 
  • 1d Bentley KW. Nat. Prod. Rep.  2006,  23:  444 
  • 1e Delcey MC. Croisy A. Carrez D. Huel C. Chiaroni A. Ducrot P. Bisagni E. Jin L. Leclercq G. Bioorg. Med. Chem.  2000,  8:  2629 
  • 2a Whaley WM. Govindachari TR. In Organic Reactions   Vol. 6:  Adams R. Wiley; New York: 1951.  p.151-190  
  • 2b Sotomayor N. Dominguez E. J. Org. Chem.  1996,  61:  4062 
  • 2c Ishikawa T. Shimooka K. Narioka T. Noguchi S. Saito T. Ishikawa A. Yamazaki E. Harayama T. Seki H. Yamaguchi K. J. Org. Chem.  2000,  65:  9143 
  • 3a Whaley WM. Govindachari TR. In Organic Reactions   Vol. 6:  Adams R. Wiley; New York: 1951.  p.74-150  
  • 3b Youn SW. J. Org. Chem.  2006,  71:  2521 
  • 3c Chrzanowska M. Rozwadowska MD. Chem. Rev.  2004,  104:  3341 
  • 3d Cox ED. Cook JM. Chem. Rev.  1995,  95:  1797 
  • 4a Gensler WJ. In Organic Reactions   Vol. 6:  Adams R. Wiley; New York: 1951.  p.191-206  
  • 4b Boudou M. Enders D. J. Org. Chem.  2005,  70:  9486 
  • 4c Walker ER. Leung SY. Barrett AGM. Tetrahedron Lett.  2005,  46:  6537 
  • 5a Ni: Korivi RP. Cheng C.-H. Org. Lett.  2005,  7:  5179 
  • 5b Pt: Bajracharya GB. Pahadi NK. Gridnev ID. Yamamoto Y. J. Org. Chem.  2006,  71:  6204 
  • 5c Ag: Niu Y.-N. Yan Z.-Y. Gao G.-L. Wang H.-L. Shu X.-Z. Ji K.-G. Liang Y.-M. J. Org. Chem.  2009,  74:  2893 
  • 5d Rh: Lim S.-G. Lee JH. Moon CW. Hong J.-B. Jun C.-H. Org. Lett.  2003,  5:  2759 
  • 5e See also: Guimond N. Fagnou K. J. Am. Chem. Soc.  2009,  131:  12050 
  • 5f Cu: Wang B. Lu B. Jiang Y. Zhang Y. Ma D. Org. Lett.  2008,  10:  2761 
  • 5g Au/Ag: Huo Z. Yamamoto Y. Tetrahedron Lett.  2009,  50:  3651 
  • 5h Zr: Ramakrishna TVV. Sharp PR. Org. Lett.  2003,  5:  877 
  • 6a Roesch KR. Larock RC. J. Org. Chem.  1998,  63:  5306 
  • 6b Roesch KR. Larock RC. Org. Lett.  1999,  1:  553 
  • 6c Dai G. Larock RC. Org. Lett.  2001,  3:  4035 
  • 6d Roesch KR. Zhang H. Larock RC. J. Org. Chem.  2001,  66:  8042 
  • 6e Huang Q. Hunter JA. Larock RC. J. Org. Chem.  2002,  67:  3437 
  • 6f Dai G. Larock RC. J. Org. Chem.  2002,  67:  7042 
  • 6g Huang Q. Hunter JA. Larock RC. J. Org. Chem.  2003,  68:  980 
  • 6h Konno T. Chae J. Miyabe T. Ishihara T. J. Org. Chem.  2005,  70:  10172 
  • For papers on constructing the 4-iodoisoquinoline skeleton by the electrophilic iodocyclization, see:
  • 7a Iminoalkynes: Huang Q. Hunter JA. Larock RC. J. Org. Chem.  2002,  67:  3437 
  • Azides:
  • 7b Fischer D. Tomeba H. Pahadi NK. Patil NT. Yamamoto Y. Angew. Chem. Int. Ed.  2007,  46:  4764 
  • 7c Fischer D. Tomeba H. Pahadi NK. Patil NT. Huo Z. Yamamoto Y. J. Am. Chem. Soc.  2008,  130:  15720 
  • 7d Huo Z. Gridnev ID. Yamamoto Y. J. Org. Chem.  2010,  75:  1266 
  • For selected examples of constructing the isoquinoline skeleton by the other transformations, see:
  • 8a Yang Y.-Y. Shou W.-G. Chen Z.-B. Hong D. Wang Y.-G. J. Org. Chem.  2008,  73:  3928 
  • 8b Pandy G. Balakrishnan M. J. Org. Chem.  2008,  73:  8128 
  • 8c Hashmi ASK. Schaefer S. Woelfe M. DiezGil C. Fischer P. Laguna A. Blanco MC. Gimeno MC. Angew. Chem. In. Ed.  2007,  46:  6184 
  • 8d Konno T. Chae J. Miyabe T. Ishihara T. J. Org. Chem.  2005,  70:  10172 
  • 8e Palacios F. Alonso C. Rodríguez M. de Marigorta EM. Rubiales G. Eur. J. Org. Chem.  2005,  1795 
  • For reviews, see:
  • 9a Lu X. Handbook of Organopalladium Chemistry for Organic Synthesis   Vol. 2:  Negishi E. Wiley Interscience; New York: 2002.  p.2267-2288  
  • 9b Tsuji J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis   Wiley and Sons; New York: 1995. 
  • 9c Li JJ. Gribble GW. Palladium in Heterocyclic Chemistry   Pergamon; New York: 2000. 
  • 9d Heck RF. Palladium Reagents in Organic Synthesis   Academic Press; New York: 1985. 
  • 9e Han XL. Liu GX. Lu XY. Chin. J. Org. Chem.  2005,  25:  1182 
  • 9f Tang S. Wang N.-X. Li J.-H. Chin. J. Org. Chem.  2007,  27:  819 
  • For pioneering papers on the halopalladation reactions, see:
  • 10a Kanada K. Uchiyama T. Fujiwara Y. Imanaka T. Teranish S. J. Org. Chem.  1979,  44:  55 
  • 10b Ma S. Lu X. J. Chem. Soc., Chem. Commun.  1990,  733 
  • 10c Ma S. Lu X. J. Org. Chem.  1991,  56:  5120 
  • 10d Ma S. Lu X. J. Org. Chem.  1993,  58:  3692 
  • 10e Zhu G. Lu X. Organometallics  1995,  14:  4899 
  • For other papers on the halopalladation reactions using PdX2/CuX2 as the catalytic system, see:
  • 11a Bäckvall JE. Nordberg RE. J. Am. Chem. Soc.  1980,  102:  393 
  • 11b Ji J. Zhang C. Lu X. J. Org. Chem.  1995,  60:  1160 
  • 11c Ma S. Lu X. J. Org. Chem.  1993,  58:  1245 
  • 11d Li J.-H. Jiang H.-F. Feng A.-Q. Jia L.-Q. J. Org. Chem.  1999,  64:  5984 
  • 11e Li J.-H. Jiang H.-F. Chen M.-C. J. Org. Chem.  2001,  66:  3627 
  • 11f Li J.-H. Liang Y. Xie Y.-X. J. Org. Chem.  2004,  69:  8125 
  • 11g Li J.-H. Tang S. Xie Y.-X.
    J. Org. Chem.  2005,  70:  477 
  • 11h Ma S. Wu B. Zhao S. Org. Lett.  2003,  5:  4429 
  • 11i Ma S. Wu B. Jiang X. Zhao S. J. Org. Chem.  2005,  70:  2568 
  • 11j Huang J. Zhou L. Jiang H. Angew. Chem. Int. Ed.  2006,  45:  1945 
  • 11k Liang Y. Tang S. Zhang X.-D. Mao L.-Q. Xie Y.-X. Li J.-H. Org. Lett.  2006,  8:  3017 
  • 11l Tang S. Xie Y.-X. Li J.-H. Wang N.-X. Synthesis  2007,  1841 
  • 11m Tang S. Yu Q.-F. Peng P. Li J.-H. Zhong P. Tang R.-Y. Org. Lett.  2007,  9:  3413 
  • 11n Huang X.-C. Wang F. Liang Y. Li J.-H. Org. Lett.  2009,  11:  1139 
  • For selected recent reviews, see:
  • 12a Weng J.-R. Tsai C.-H. Kulp SK. Chen C.-S. Cancer Lett.  2008,  262:  153 
  • 12b Rieck GC. Fiander AN. Mol. Nutr. Food Res.  2008,  52:  105 
  • 12c Brancale A. Silvestri R. Med. Res. Rev.  2007,  27:  209 
  • For selected recent reviews, see:
  • 13a Cacchi S. Fabrizi G. Chem. Rev.  2005,  105:  2873 
  • 13b Krüger K. Tillack A. Beller M. Adv. Synth. Catal.  2008,  350:  2153 
  • 13c Thansandote P. Lautens M. Chem. Eur. J.  2009,  15:  5874 
  • 15 Yu X. Wu J. J. Comb. Chem.  2009,  11:  895 
14

General Procedure for the Chloropalladation Reaction: To a flame-dried Schlenk tube equipped with a magnetic stirring bar were added azide 1 (0.3 mmol), PdCl2 (5 mol%), CuCl2 (3 equiv), Cy2NH2Cl (0.2 equiv) and CH2ClCH2Cl (5 mL). The reaction mixture was stirred at 80 ˚C for 24 h until complete consumption of starting material as monitored by TLC and GC-MS analysis. After the reaction was finished, the mixture was poured into EtOAc, washed with brine (3 × 10 mL), and extracted with EtOAc. The combined organic layers were dried over anhyd Na2SO4 and evaporated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane-EtOAc) to afford the desired product.
4-Chloro-3-phenylisoquinoline (2a):6g,¹5 colorless oil. ¹H NMR (500 MHz, CDCl3): δ = 9.24 (s, 1 H), 8.35 (d, J = 8.5 Hz, 1 H), 8.04 (d, J = 8.0 Hz, 1 H), 7.85 (t, J = 8.5 Hz, 1 H), 7.81 (d, J = 11.5 Hz, 2 H), 7.69 (t, J = 7.5 Hz, 1 H), 7.51 (t, J = 7.5 Hz, 2 H), 7.45 (t, J = 8.5 Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 150.5, 150.1, 139.1, 134.7, 131.6, 130.0, 128.5, 128.4, 128.0, 127.9, 127.7, 124.1, 109.4. LRMS (EI, 70 eV): m/z (%) = 241 (21) [M+ + 2], 239 (67) [M+], 204 (100) [M+ - Cl].
General Procedure for the Bromopalladation Reaction: To a flame-dried Schlenk tube equipped with a magnetic stirring bar were added azide 1 (0.3 mmol), PdBr2 (5 mol%), CuBr2 (3 equiv), LiBr (2 equiv) and MeCN (5 mL). The reaction mixture was stirred at 80 ˚C for 24 h until complete consumption of starting material as monitored by TLC and GC-MS analysis. After the reaction was finished, the mixture was poured into EtOAc, washed with brine (3 × 10 mL), and extracted with EtOAc. The combined organic layers were dried over anhyd Na2SO4 and evaporated under vacuum. The residue was purified by flash column chromatography on silica gel (hexane-EtOAc) to afford the desired product.
4−Βροµο−3−πηενψλισοθυινολινε (3α):15 Χολορλεσσ οιλ. 1Η ΝΜΡ (500 ΜΗζ, ΧΔΧλ3): δ = 9.23 (σ, 1 Η), 8.33 (δ, ϑ = 8.5 Ηζ, 1 Η), 8.01 (δ, ϑ = 8.0 Ηζ, 1 Η), 7.84 (τ, ϑ = 8.0 Ηζ, 1 Η), 7.73 (δ, ϑ = 8.5 Ηζ, 2 Η), 7.68 (τ, ϑ = 8.0 Ηζ, 1 Η), 7.50 (τ, ϑ = 7.8 Ηζ, 2 Η), 7.45 (τ, ϑ = 8.0 Ηζ, 1 Η). 13Χ ΝΜΡ (125 ΜΗζ, ΧΔΧλ3): δ = 152.3, 151.1, 140.7, 136.0, 131.9, 129.9, 128.6, 128.3, 128.0, 127.9, 127.7, 127.0, 118.3. ΛΡΜΣ (ΕΙ, 70 ες): µ/ζ (%) = 285 (23) [Μ+ + 2], 283 (25) [Μ+], 204 (100) [Μ+ ∠ Βρ].