Abstract
A selective method for 2-aryl-2H -
and 4-aryl-4H -3,5-diformylpyrans synthesis
from 1,1,3,3-tetramethoxypropane and aromatic aldehydes was developed
using an FeCl3 catalyst in MeOH-AcOH and an
AlCl3 catalyst in DMA-AcOH.
Key words
acetals - pyrans - aldehydes - Lewis
acids - catalysis
References and Notes
For recent examples, see:
<A NAME="RU00611ST-1A">1a </A>
Oepstad CL.
Sliwka H.-R.
Partali V.
Eur. J. Org. Chem.
2010,
435
<A NAME="RU00611ST-1B">1b </A>
Fan X.
Feng D.
Qu Y.
Zhang X.
Wang J.
Loiseau PM.
Andrei G.
Snoeck R.
De Clercq E.
Bioorg.
Med. Chem. Lett.
2010,
20:
809
<A NAME="RU00611ST-1C">1c </A>
Aljarilla A.
Plumet J.
Heterocycles
2008,
76:
827
<A NAME="RU00611ST-1D">1d </A>
Lachance H.
Marion O.
Hall DG.
Tetrahedron Lett.
2008,
49:
6061
<A NAME="RU00611ST-1E">1e </A>
Salit A.-F.
Meyer C.
Cossy J.
Synlett
2007,
934
<A NAME="RU00611ST-1F">1f </A>
Li W.
Wayne GS.
Lallaman JE.
Wittenberger SJ.
J.
Org. Chem.
2006,
71:
1725
<A NAME="RU00611ST-1G">1g </A>
Donner CD.
Gill M.
Tewierik LM.
Molecules
2004,
9:
498
<A NAME="RU00611ST-1H">1h </A>
Tanaka S.
Isobe M.
Tetrahedron
1994,
50:
5633
<A NAME="RU00611ST-1I">1i </A>
Crawley GC.
Briggs MT.
Dowell RI.
Edwards PN.
Hamilton PM.
Kingston JF.
Oldham K.
Waterson D.
Whalley DP.
J.
Med. Chem.
1993,
36:
295
<A NAME="RU00611ST-2A">2a </A>
Zhang X.-M.
Tu Y.-Q.
Jiang Y.-J.
Zhang Y.-Q.
Fan C.-A.
Zhang F.-M.
Chem.
Commun.
2009,
4726
<A NAME="RU00611ST-2B">2b </A>
Hoye TR.
Danielson ME.
May AE.
Zhao H.
Angew.
Chem. Int. Ed.
2008,
47:
9743
<A NAME="RU00611ST-3">3 </A>
Foroumadi A.
Emami S.
Sorkhi M.
Nakhjiri M.
Nazarian Z.
Heydari S.
Ardestani SK.
Poorrajab F.
Shafiee A.
Chem. Biol.
Drug Des.
2010,
75:
590
<A NAME="RU00611ST-4A">4a </A>
Shaabani A.
Nejat FS.
J.
Chem. Res., Synop.
1998,
584
<A NAME="RU00611ST-4B">4b </A>
Amaresh RR.
Perumal PT.
Tetrahedron
1999,
55:
8083
<A NAME="RU00611ST-4C">4c </A>
Csihony S.
Mika L.
Vlád G.
Barta K.
Mehnert CP.
Horváth IT.
Collect.
Czech. Chem. Commun.
2007,
72:
1094 ;
and references therein
<A NAME="RU00611ST-5A">5a </A>
Reichardt C.
Yun K.-Y.
Massa W.
Schmidt RE.
Liebigs
Ann. Chem.
1985,
1987
<A NAME="RU00611ST-5B">5b </A>
Medvedeva AS.
Pavlov DV.
Mareev AV.
Russ. J. Org. Chem.
2008,
44:
143
<A NAME="RU00611ST-6">6 </A>
Maeda S.
Obora Y.
Ishii Y.
Eur.
J. Org. Chem.
2009,
4067
<A NAME="RU00611ST-7A">7a </A>
Tamaso K.
Hatamoto Y.
Sakaguchi S.
Obora Y.
Ishii Y.
J. Org. Chem.
2007,
72:
3603
<A NAME="RU00611ST-7B">7b </A>
Tamaso K.
Hatamoto Y.
Obora Y.
Sakaguchi S.
Ishii Y.
J.
Org. Chem.
2007,
72:
8820
<A NAME="RU00611ST-7C">7c </A>
Maeda S.
Horikawa N.
Obora Y.
Ishii Y.
J. Org. Chem.
2009,
74:
9558
<A NAME="RU00611ST-8">8 </A>
Cockerill AF.
Harrison RG. In
The Chemistry of Double-Bonded Functional
Groups
Part 1:
Patai S.
John
Wiley and Sons;
London:
1977.
p.277-285
<A NAME="RU00611ST-9">9 </A>
All the attempts to isolate or fully
characterize the intermediates B , C , and D were
unsuccessful. However, when the reaction of 1 and 2g was carried out at r.t. under the conditions
as in Table
[² ]
,
entry 7, the intermediate B for the formation
of 3g was detected by GC and GC-MS analysis. HRMS
(EI): m/z calcd for C11 H7 O2 F3 [M]+ :
228.0398; found: 228.0396.
<A NAME="RU00611ST-10">10 </A>
Oare DA.
Heathcock CH.
Top. Stereochem.
1989,
19:
227
<A NAME="RU00611ST-11A">11a </A>
Krishtal GV.
Kulganek VV.
Kucherov VF.
Yanovskaya LA.
Synthesis
1979,
107
<A NAME="RU00611ST-11B">11b </A>
Yamaguchi M.
Yokota N.
Minami T.
J.
Chem. Chem., Chem. Commun.
1991,
1088
<A NAME="RU00611ST-12">12 </A>
Oare DA.
Heathcock CH.
Top. Stereochem.
1991,
20:
87