Abstract
The first enantioselective synthesis of planar chiral [7] and [8]paracyclophanes
has been achieved by the cationic rhodium(I)-(S )-H8 -BINAP complex catalyzed [2+2+2] cycloaddition. Planar
chiral [9]paracyclophanes were also synthesized
by the same method. The first X-ray crystallographic analysis of
the strained dioxa[7]paracyclophane revealed the
significant deformation of the benzene ring from planarity.
Key words
alkynes - paracyclophanes - planar chirality - rhodium - [2+2+2] cycloaddition
References and Notes
For reviews of cyclophanes, see:
<A NAME="RU10310ST-1A">1a </A>
Cyclophane Chemistry
Vögtle F.
Wiley;
Chichester:
1993.
<A NAME="RU10310ST-1B">1b </A>
Modern
Cyclophane Chemistry
Gleiter R.
Hopf H.
Wiley;
Weinheim:
2004.
For a review of cyclophane synthesis,
see:
<A NAME="RU10310ST-2A">2a </A>
Kane VV.
De Wolf WH.
Bickelhaupt F.
Tetrahedron
1994,
50:
4574
For a review of transition-metal-catalyzed synthesis of compounds
with noncentrochirality, see:
<A NAME="RU10310ST-2B">2b </A>
Ogasawara M.
Watanabe S.
Synthesis
2009,
1761
<A NAME="RU10310ST-3A">3a </A>
Kanomata N.
Ochiai Y.
Tetrahedron
Lett.
2001,
42:
1045
<A NAME="RU10310ST-3B">3b </A>
Kanomata N.
Oikawa J.
Tetrahedron Lett.
2003,
44:
3625
<A NAME="RU10310ST-3C">3c </A>
Ueda T.
Kanomata N.
Machida H.
Org. Lett.
2005,
7:
2365
<A NAME="RU10310ST-3D">3d </A>
Kanomata N.
Mishima G.
Onozato J.
Tetrahedron
Lett.
2009,
50:
409
<A NAME="RU10310ST-4A">4a </A>
Kanda K.
Endo K.
Shibata T.
Org. Lett.
2010,
12:
1980
<A NAME="RU10310ST-4B">4b </A>
Kanda K.
Koike T.
Endo K.
Shibata T.
Chem. Commun.
2009,
1870
<A NAME="RU10310ST-5A">5a </A>
Tanaka K.
Hori T.
Osaka T.
Noguchi K.
Hirano M.
Org. Lett.
2007,
9:
4881
<A NAME="RU10310ST-5B">5b </A>
Hori T.
Shibata Y.
Tanaka K.
Tetrahedron:
Asymmetry
2010,
21:
1303
For our synthesis of achiral cyclophanes
by the cationic rhodium(I)-H8 -BINAP complex
catalyzed [2+2+2] cycloaddition,
see:
<A NAME="RU10310ST-6A">6a </A>
Tanaka K.
Shirasaka K.
Org. Lett.
2003,
5:
4697
<A NAME="RU10310ST-6B">6b </A>
Tanaka K.
Toyoda K.
Wada A.
Shirasaka K.
Hirano M.
Chem. Eur.
J.
2005,
11:
1145
<A NAME="RU10310ST-6C">6c </A>
Tanaka K.
Sagae H.
Toyoda K.
Noguchi K.
Eur. J. Org. Chem.
2006,
3575
For our account of the cationic rhodium(I)-biaryl
bisphosphine complex catalyzed [2+2+2] cycloaddition,
see:
<A NAME="RU10310ST-6D">6d </A>
Tanaka K.
Synlett
2007,
1977
For synthesis of achiral cyclophanes
by the transition-metal-catalyzed [2+2+2] cycloaddition,
see:
<A NAME="RU10310ST-7A">7a </A>
Moretto AF.
Zhang H.-C.
Maryanoff BE.
J. Am. Chem. Soc.
2001,
123:
3157
<A NAME="RU10310ST-7B">7b </A>
Boñaga LVR.
Zhang H.-C.
Gauthier DA.
Reddy I.
Maryanoff BE.
Org. Lett.
2003,
5:
4537
<A NAME="RU10310ST-7C">7c </A>
Boñaga LVR.
Zhang H.-C.
Maryanoff BE.
Chem. Commun.
2004,
2394
<A NAME="RU10310ST-7D">7d </A>
Boñaga LVR.
Zhang H.-C.
Moretto AF.
Ye H.
Gauthier DA.
Li J.
Leo GC.
Maryanoff BE.
J. Am. Chem. Soc.
2005,
127:
3473
<A NAME="RU10310ST-7E">7e </A>
Kinoshita H.
Shinokubo H.
Oshima K.
J.
Am. Chem. Soc.
2003,
125:
7784
<A NAME="RU10310ST-8A">8a </A>
Tanaka K.
Sagae H.
Toyoda K.
Noguchi K.
Hirano M.
J. Am. Chem. Soc.
2007,
129:
1522
<A NAME="RU10310ST-8B">8b </A>
Tanaka K.
Sagae H.
Toyoda K.
Hirano M.
Tetrahedron
2008,
64:
831
<A NAME="RU10310ST-9">9 </A> Enantioselective synthesis of chiral
tripodal cage compounds by the rhodium-catalyzed [2+2+2] cycloaddition
of branched triynes was reported. See:
Shibata T.
Uchiyama T.
Endo K.
Org.
Lett.
2009,
11:
3906
<A NAME="RU10310ST-10">10 </A>
Lowering the catalyst loading to 2
mol% resulted in poor conversion (at least <50%)
of 1a and 2a under
the same reaction conditions of Table
[¹ ]
.
<A NAME="RU10310ST-11">11 </A>
Racemization of [9]paracyclophane 3ca was not observed at all in a DCE solution
at 80 ˚C for 6 h.
<A NAME="RU10310ST-12">12 </A>
The corresponding meta -
and ortho -cyclophanes were also generated
as minor byproducts.
<A NAME="RU10310ST-13">13 </A>
Employing a more diluted reaction
conditions (0.01-0.005 M) did not further improve the yield
of 3aa .
<A NAME="RU10310ST-14">14 </A>
Pischel I.
Nieger M.
Archut A.
Vögtle F.
Tetrahedron
1996,
52:
10043
<A NAME="RU10310ST-15">15 </A>
Allinger NL.
Walter TJ.
Newton MG.
J. Am. Chem. Soc.
1974,
96:
4588
<A NAME="RU10310ST-16">16 </A>
CCDC 801251 [(R )-(+)-3aa ] contains
the supplementary crystallographic data for this paper. This data
can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
<A NAME="RU10310ST-17">17 </A>
Tobe Y.
Ueda K.-I.
Kakiuchi K.
Odaira Y.
Tetrahedron
1986,
42:
1851
<A NAME="RU10310ST-18">18 </A>
Although the significant deformation
of the benzene ring from planarity was observed in the strained [7]paracyclophane
3aa , the ¹ H NMR chemical
shifts of the aromatic protons of 3aa appears
in the standard aromatic region (δ = 8.28-7.56
ppm). Furthermore, isomerization of 3aa to
the corresponding Dewar or prismane isomer was not observed in both
solution and solid states at room temper-ature under visible light.
These observations indicate that 3aa still
possesses stable aromatic structure.