Subscribe to RSS
DOI: 10.1055/s-0030-1259317
β-Aminosulfonamide-Catalyzed Direct Asymmetric Aldol Reaction in Brine
Publication History
Publication Date:
13 January 2011 (online)

Abstract
Direct asymmetric aldol reactions of aldehydes with ketones in the presence of a catalytic amount of β-aminosulfonamide 2 and trifluoroacetic acid in brine results in the formation of the corresponding anti-aldol products in high yields with up to 96% enantiomeric excess. The anti-aldol products obtained by using organocatalyst 2 have the opposite absolute configuration to those obtained using the similar sulfonamide catalyst 1, which was reported previously by us.
Key words
organocatalyst - aldol reaction - sulfonamide - brine - asymmetric
- For selected reviews on organocatalysis, see:
- 1a
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138Reference Ris Wihthout Link - 1b
Pellissier H. Tetrahedron 2007, 63: 9267Reference Ris Wihthout Link - 1c
Mukherjee S.Yang JW.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471Reference Ris Wihthout Link - 1d
Dondoni A.Massi A. Angew. Chem. Int. Ed. 2008, 47: 4638Reference Ris Wihthout Link - 1e
Lattanzi A. Chem. Commun. 2009, 1452Reference Ris Wihthout Link - 1f
Liu X.Lin L.Feng X. Chem. Commun. 2009, 6145Reference Ris Wihthout Link - 2
Modern
Aldol Reactions
Vol. 1 and 2:
Mahrwald R. Wiley-VCH; Weinheim: 2004. - For selected reviews on organocatalysis in water, see:
- 3a
Gruttadauria M.Giacalone F.Noto R. Adv. Synth. Catal. 2009, 351: 33Reference Ris Wihthout Link - 3b
Paradowska J.Stodulski M.Mlynarski J. Angew. Chem. Int. Ed. 2009, 48: 4288Reference Ris Wihthout Link - 3c
Raj M.Singh K. Chem. Commun. 2009, 6687Reference Ris Wihthout Link - For selected recent examples of organocatalyzed aldol reactions in water, see:
- 3d
An Y.-J.Zhang Y.-X.Wu Y.Liu Z.-M.Pi C.Tao J.-C. Tetrahedron: Asymmetry 2010, 21: 688Reference Ris Wihthout Link - 3e
Zhang S.-P.Fu X.-K.Fu S.-D. Tetrahedron Lett. 2009, 50: 1173Reference Ris Wihthout Link - 3f
Zhou H.Xie Y.Ren L.Wang K. Adv. Synth. Catal. 2009, 351: 1284Reference Ris Wihthout Link - 3g
Ma X.Da C S.Yi L.Jia Y.-N.Guo Q.-P.Che L.-P.Wu F.-C.Wang J.-R.Li W.-P. Tetrahedron: Asymmetry 2009, 20: 1419Reference Ris Wihthout Link - 3h
Chimni SS.Singh S.Kumar A. Tetrahedron: Asymmetry 2009, 20: 1722Reference Ris Wihthout Link - 3i
Fu S.-D.Fu X.-K.Zhang S.-P.Zou X.-C.Wu X.-J. Tetrahedron: Asymmetry 2009, 20: 2390Reference Ris Wihthout Link - 3j
Vishnumaya MR.Singh VK. J. Org. Chem. 2009, 74: 4289Reference Ris Wihthout Link - 3k
Nisco MD.Pedatella S.Ullah H.Zaidi JH.Naviglio D.Ozdamar O.Caputo R. J. Org. Chem. 2009, 74: 9562Reference Ris Wihthout Link - 3l
Vishnumaya MR.Singh VK. J. Org. Chem. 2009, 74: 4289Reference Ris Wihthout Link - 3m
Mase N.Noshiro N.Mokuya A.Takabe K. Adv. Synth. Catal. 2009, 351: 2791Reference Ris Wihthout Link - 3n
Tea Y.-C.Lee PP. Synth. Commun. 2009, 39: 3081Reference Ris Wihthout Link - 3o
Jia Y.-N.Wu F.-C.Ma X.Zhu G.-J.Da C S. Tetrahedron Lett. 2009, 50: 3059Reference Ris Wihthout Link - 3p
Ramasastry SSV.Albertshofer K.Utsumi N.Barbas CF. Org. Lett. 2008, 10: 1621Reference Ris Wihthout Link - 3q
Zhu M.-K.Xu X.-Y.Gong L.-Z. Adv. Synth. Catal. 2008, 350: 1390Reference Ris Wihthout Link - 3r
Zu L.Xie H.Li H.Wang J.Wang W. Org. Lett. 2008, 10: 1211Reference Ris Wihthout Link - 3s
Gandhi S.Singh VK. J. Org. Chem. 2008, 73: 9411Reference Ris Wihthout Link - 3t
Zhao J.-F.He L.Jiang J.Tang Z.Cun L.-F.Gong L.-Z. Tetrahedron Lett. 2008, 49: 3372Reference Ris Wihthout Link - 3u
Huang W.-P.Chen J.-R.Li X.-Y.Cao Y.-J.Xiao W.-J. Can. J. Chem. 2007, 85: 208Reference Ris Wihthout Link - 3v
Huang J.Zhang X.Armstrong DW. Angew. Chem. Int. Ed. 2007, 46: 9073Reference Ris Wihthout Link - 3w
Gryko D.Saletra WJ. Org. Biomol. Chem. 2007, 5: 2148Reference Ris Wihthout Link - 3x
Hayashi Y.Sumiya T.Takahashi J.Gotoh H.Urushima T.Shoji M. Angew. Chem. Int. Ed. 2006, 45: 958Reference Ris Wihthout Link - 3y
Mase N.Nakai Y.Ohara N.Yoda H.Takabe K.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2006, 128: 734Reference Ris Wihthout Link - 4
Nakayama K.Maruoka K. J. Am. Chem. Soc. 2008, 130: 17666 - 5
Miura T.Yasaku Y.Koyata N.Murakami Y.Imai N. Tetrahedron Lett. 2009, 50: 2632 - 6
Miura T.Imai K.Ina M.Tada N.Imai N.Itoh A. Org. Lett. 2010, 12: 1620 - 7
Imai N.Nokami J.Nomura T.Ninomiya Y.Shinobe A.Matsushiro S. Bull. Okayama Univ. Sci. 2002, 47 - 9a
Bassan A.Zou W.Reues E.Himo F.Córdova A. Angew. Chem. Int. Ed. 2005, 44: 7028Reference Ris Wihthout Link - 9b
Dziedzic P.Zou W.Háfren J.Córdova A. Org. Biomol. Chem. 2006, 4: 38Reference Ris Wihthout Link - 10
Mase N.Watanabe K.Yoda H.Takabe K.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2006, 128: 4966 - 11 We assume that the aldol reactions
are accelerated by the use of brine (salting-out effect),¹0 see:
Maya V.Singh VK. Org. Lett. 2007, 9: 1117
References and Notes
A typical procedure for the aldol condensation using 2 and 6a is as follows: To a colorless suspension of p-nitro-benzaldehyde (6a; 90.7 mg, 0.600 mmol) and the organo-catalyst 2 (33.9 mg, 0.120 mmol) in brine (1.2 mL), were added cyclohexanone (0.62 mL, 6.00 mmol) and TFA (2.2 µL, 0.030 mmol) at r.t. The reaction mixture was stirred at r.t. for 36 h, and extracted three times with EtOAc. The organic layers were combined, washed with brine, dried over anhydrous MgSO4, and evaporated. The residue was purified by flash column chromatography on silica gel (toluene-EtOAc, 4:1) to afford pure 8a (121.3 mg, 81%) as a colorless solid.