References and Notes
<A NAME="RD27110ST-1">1</A>
Pandya KC.
Kurien PN.
Surange VR.
J. Indian Chem. Soc.
1934,
11:
823
<A NAME="RD27110ST-2">2</A>
Wright WB.
Brabander HJ.
Hardy RA.
Osterberg
AC.
J.
Med. Chem.
1966,
9:
852
<A NAME="RD27110ST-3">3</A>
Goldberg MW, and
Lehr HH. inventors; US Patent, US2602086.
<A NAME="RD27110ST-4">4</A>
Karjalainen AJ,
Kurkela K,
Oiva APS, and
Sulevi L. inventors; Eur.
Patent EP0058047.
<A NAME="RD27110ST-5">5</A>
Kumar P.
Nath C.
Shanker K.
Pharmazie
1985,
40:
267
<A NAME="RD27110ST-6A">6a</A>
Khan KM.
Mughal UR.
Samreen NA.
J. Enzyme Inhib.
Med. Ch.
2010,
25:
29
<A NAME="RD27110ST-6B">6b</A>
Amir M.
Kumar A.
Ali I.
Indian
J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2009,
48:
1288
<A NAME="RD27110ST-6C">6c</A>
Desai NC.
Bhavsar AM.
Baldaniya BB.
Indian J. Pharm. Sci.
2009,
71:
90
<A NAME="RD27110ST-7">7</A>
Zhou P.
Malamas M.
Robichaud AJ.
ARKIVOC
2010,
(vi):
84
<A NAME="RD27110ST-8">8</A>
Jain V.
Bhattacharjya G.
Tej A.
Suman CK.
Gurunath R.
Mazhari B.
Iyer SSK.
Proceedings of ASID ’06
IITK & SID;
New
Delhi:
2006.
8-12 Oct.
p.244
<A NAME="RD27110ST-9">9</A>
Bahadur L.
Roy L.
J. Appl. Electrochem.
1999,
29:
109
<A NAME="RD27110ST-10A">10a</A>
Mukerjee AK.
Kumar P.
Can.
J. Chem.
1982,
60:
317
<A NAME="RD27110ST-10B">10b</A>
Kelarev VI.
Silin MA.
Borisova OA.
Chem. Heterocycl. Compd.
2003,
39:
729
<A NAME="RD27110ST-10C">10c</A>
Hamidian H.
Tikdari AM.
Khabazzadeh H.
Molecules
2006,
11:
377
<A NAME="RD27110ST-10D">10d</A>
Wadekar MP.
Raut AR.
Murhekar GH.
Der Pharma Chemica
2010,
2(1):
76
<A NAME="RD27110ST-11A">11a</A>
Kawasaki A.
Maekawa K.
Kubo K.
Igarashi T.
Sakurai T.
Tetrahedron
2004,
60:
9517
<A NAME="RD27110ST-11B">11b</A>
Topuzyan VO.
Arutyunyan LG.
Oganesyan AA.
Panosyan GA.
Russ.
J. Org. Chem.
2007,
43:
936
<A NAME="RD27110ST-11C">11c</A>
Topuzyan VO.
Arutyunyan LG.
Oganesyan AA.
Panosyan GA.
Russ. J.
Org. Chem.
2008,
44:
474
<A NAME="RD27110ST-12">12</A>
¹H NMR (600 MHz,
DMSO-d
6): δ = 11.25
(s, 1 H, NH), 8.38 (d, 2 H, J
HH = 7.8
Hz, CHAr), 7.62 (m, 2 H, CHAr), 7.54 (t, 2 H, J
HH = 7.8 Hz, CHAr),
7.44 (t, 2 H, J
HH = 7.8
Hz, CHAr), 7.40 (t, 2 H, J
HH = 7.2
Hz, CHAr), 4.17 (q, 2 H, J
HH = 7.2
Hz, CH3CH
2O), 1.14
(t, 3 H, J
HH = 7.2
Hz, CH
3CH2O). ¹³C
NMR (150 MHz, DMSO-d
6): δ = 167.7,
164.8, 162.9, 137.3, 132.3, 129.6, 128.8, 128.7, 128.4, 128.3, 126.5,
86.5, 62.5, 13.8. All 2D NMR experiments for 3a were
carried out using DMSO-d
6 as
a solvent. COSY correlation list: δ [ppm]-δ [ppm](assignment):
1.14-4.17 (CH
3CH2O),
4.17-1.14 (CH3CH
2O),
7.40-7.44 (p-CH), 7.44-7.40,
7.62 (m-CH), 7.54-7.62, 8.38
(m-CH), 7.62-7.54 (p-CH), 7.62-7.44 (o-CH), 8.38-7.54 (o-CH). HSQC: correlation list: ¹³C
shift [ppm]-¹H shift [ppm](assignment):
13.7-1.14 (CH
3CH2O), 62.5-4.17
(CH3
CH
2O), 126.5-7.62
(o-CH), 128.3-8.38 (o-CH), 128.4-7.44 (m-CH), 128.7-7.54 (m-CH), 128.8-7.40 (p-CH), 132.3-7.62 (p-CH). HMBC: correlation list: ¹H
shift [ppm]-¹³C
shifts [ppm] (atom connectivity): 1.14-62.5 (ester
group CH
3
CH2O),
4.17-13.7 and 167.7 (ester group CH3CH
2OCO), 7.40-126.5
(p-CH and C-2, phenyl group A), 7.44-126.5,
128.8 and 137.4 (m-CH and C-2, C-4, C-1, phenyl
group A), 7.54-128.3, 129.6 (m-CH
and C-2, C-1, phenyl group B), 7.62-86.9, 126.5 and 128.8
(o-CH and quaternary C-2 of the imidazolidine
ring, C-2, C-4, phenyl group A), 7.62-128.3 (p-CH and C-2, phenyl group B), 8.38-128.7,
132.3 and 162.9 (o-CH and C-3, C-4 in
phenyl group B and C=N in the imidazolidine ring), 11.25-86.9, 162.9
and 164.8 (NH group and quaternary C-2, C=N and C=O
in the imidazolidine ring). According to HMBC data, phenyl substituents
A and B were attached to the imidazolidine ring at C-2 and C-4,
respectively.
<A NAME="RD27110ST-13A">13a</A>
Cież D.
Org. Lett.
2009,
11:
4282
<A NAME="RD27110ST-13B">13b</A> For more data on instability
of lithium enolates of α-azidocarboxylic esters, see also:
Manis PA.
Rathke MW.
J. Org. Chem.
1980,
45:
4952
<A NAME="RD27110ST-14A">14a</A>
Matsuda Y.
Tanimoto S.
Okamoto T.
Ali SM.
J.
Chem. Soc., Perkin Trans. 1
1989,
279
<A NAME="RD27110ST-14B">14b</A>
Yasunobu A.
Shoko T.
Tomomi K.
Masanori S.
Chem. Pharm. Bull.
1984,
32:
1800
<A NAME="RD27110ST-15">15</A>
Paul A.
Bittermann H.
Gmeiner P.
Tetrahedron
2006,
62:
8919
<A NAME="RD27110ST-16">16</A>
General Method
for Preparation of Imidazolin-5-ones 3 from α-Bromoacetates; Representative One-Pot Synthesis of Ethyl 2,4-Bis(4-ethoxyphenyl)-5-oxo-2,5-dihydro-1
H
-imidazole-2-carboxylate
(3d): Ethyl α-bromo-2-(4-ethoxyphenylacetate) (4d; 1.254 g, 4.4 mmol) and sodium azide
(0.428 g, 6.6 mmol, 1.5 equiv) were added to DMF (20 mL). The suspension
was stirred and heated for 24 h at 80 ˚C. After cooling,
the reaction mixture was poured into H2O (100 mL) and
extracted with EtOAc (3 × 30 mL). The combined extracts
were washed with H2O (2 × 50 mL) and dried over
anhyd Na2SO4. The mixture was filtered and the
solvent was removed under reduced pressure. The crude product was
purified by column chromatography using silica gel (230-400
mesh; CHCl3-MeOH, 30:1) to give 3d as colorless
crystals (TLC silica gel; Fluka 60778; CHCl3-MeOH,
30:1; R
f
0.55);
mp 132 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 8.48
(d, 2 H, J
HH = 9.1
Hz, CHAr), 8.40 (br s, 1 H, NH), 7.50 (d, 2 H, J
HH = 9.0 Hz, CHAr),
6.95 (d, 2 H, J
HH = 9.1
Hz, CHAr), 6.89 (d, 2 H, J
HH = 9.0
Hz, CHAr), 4.25 (2 × dq, 2 H, J
HH = 7.11,
7.14, 10.7 Hz, OCH2), 4.10 (q, 2 H, J
HH = 7.0
Hz, OCH2), 4.02 (q, 2 H, J
HH = 7.0
Hz, OCH2), 1.44 (t, 3 H, J
HH = 7.0
Hz, Me), 1.40 (t, 3 H, J
HH = 7.0
Hz, Me), 1.26 (t, 3 H, J
HH = 7.1
Hz, Me). ¹³C NMR (75 MHz, CDCl3): δ = 168.3
(COOEt), 165.7 (CONH), 162.3 (C=N), 161.6 (C4), 159.5 (C4),
130.8 (C3), 129.0 (C1), 127.4 (C3), 122.3 (C1), 114.6 (C2), 114.4
(C2), 86.0 (C2-imidazolidine), 63.6 (OCH2), 63.5 (OCH2),
62.9 (OCH2), 14.7 (Me), 14.7 (Me), 14.0 (Me). IR (neat):
3168, 3071, 2979, 2936, 1742, 1705, 1595, 1571, 1512, 1237, 1172
cm-¹. Anal. Calcd for C22H24N2O5:
C, 66.65; H, 6.10; N, 7.06. Found: C, 66.45; H, 6.01; N, 7.10.
<A NAME="RD27110ST-17">17</A>
Standard Procedure
for Synthesis of α-Bromoacetates from Commercial Ethyl
Aryl- and Heteroarylacetates; Representative Preparation of Ethyl
Bromo(4-ethoxy-phenyl) Acetate (4d): Ethyl 4-ethoxyphenylacetate
(1.695 g, 8.14 mmol) was treated with NBS (1.449 g, 1 equiv) and Luperox® A70S
(0.176 g, 0.50 mmol) in CCl4 (30 mL). The reaction mixture
was stirred and heated for 30 h at 74 ˚C. After cooling
the solution was filtered through a Celite pad and the solvent was
evaporated. The crude product, ethyl bromo(4-ethoxyphenyl) acetate
(4d), was pure enough to be used for the
next step.
<A NAME="RD27110ST-18A">18a</A>
Bock H.
Dammel R.
Horner L.
Chem. Ber.
1981,
114:
220
<A NAME="RD27110ST-18B">18b</A>
Bock H.
Dammel RS.
Aygen J.
J.
Am. Chem. Soc.
1983,
105:
7681
<A NAME="RD27110ST-18C">18c</A>
Bock H.
Dammel R.
Angew. Chem., Int. Ed. Engl.
1987,
26:
504 ; Angew. Chem. 1987, 99, 518
<A NAME="RD27110ST-18D">18d</A>
Bock H.
Dammel R.
J. Am. Chem. Soc.
1988,
110:
5261
For more details, see:
<A NAME="RD27110ST-19A">19a</A>
Dyke JM.
Levita G.
Morris AJ.
Ogden S.
Dias AA.
Algarra M.
Santos JP.
Costa ML.
Rodrigues P.
Andrade MM.
Barros MT.
Chem. Eur. J.
2005,
11:
1665
<A NAME="RD27110ST-19B">19b</A>
Shirtcliff LD.
McClintock SP.
Haley MM.
Chem. Soc. Rev.
2008,
37:
343
<A NAME="RD27110ST-19C">19c</A>
Trost BM.
Fleming I.
Ley SV.
Oxidation In Comprehensive Organic
Synthesis - Selectivity, Strategy and Efficiency in Modern
Organic Chemistry
Vol. 7: 5th ed.:
Elsevier
Ltd.;
Amsterdam:
2005.
p.23
<A NAME="RD27110ST-20A">20a</A>
Poisel H.
Chem. Ber.
1977,
110:
942
<A NAME="RD27110ST-20B">20b</A>
Shin C.
Masaki M.
Ohta M.
Bull.
Chem. Soc. Jpn.
1971,
44:
1657
<A NAME="RD27110ST-21">21</A>
Partial NMR data for diethyl iminomalonate
were determined from the crude reaction mixture. ¹H
NMR (300 MHz, CDCl3): δ = 11.76 (br
s, 1 H, NH), 4.29 (q, 2 H, J
HH = 7.1
Hz, OCH2), 1.30 (t, 3 H, J
HH = 7.1
Hz, Me). ¹³C NMR (75 MHz, CDCl3): δ = 161.0
(COOEt), 152.3 (C=NH), 61.6 (OCH2), 14.3 (Me).