Synlett 2011(2): 169-172  
DOI: 10.1055/s-0030-1259292
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

First Example of Quinoxaline-Directed C-H Activation: A Novel Method for Acetoxylation of Arenes

B. V. Subba Reddy*, K. Ramesh, J. S. Yadav
Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 007, India
e-Mail: basireddy@iict.res.in;
Further Information

Publication History

Received 2 August 2010
Publication Date:
23 December 2010 (online)

Abstract

2-Aryl- and 2,3-diarylquinoxalines undergo smooth acetoxylation in the presence of 5 mol% Pd(OAc)2 and a stoichiometric amount of PhI(OAc)2 via C-H activation to produce the corresponding acetoxy-susbstituted quinoxaline derivatives in excellent yields with high regioselectivity.

    References and Notes

  • 1a He W. Meyers MR. Hanney B. Sapada A. Blider G. Galzeinski H. Amin D. Needle S. Page K. Jayyosi Z. Perrone H. Bioorg. Med. Chem. Lett.  2003,  13:  3097 
  • 1b Kim YB. Kim YH. Park JY. Kim SK. Bioorg. Med. Chem. Lett.  2004,  14:  541 
  • 2 Sakata G. Makino K. Kuraswa Y. Heterocycles  1988,  27:  2481 ; and references cited therein
  • 3a Dell A. William DH. Morris HR. Smith GA. Feeney J. Roberts GCK. J. Am. Chem. Soc.  1975,  97:  2497 
  • 3b Bailly C. Echepare S. Gago F. Waring M. Anti-Cancer Drug Des.  1999,  15:  291 
  • 3c Sato S. Shiratori O. Katagiri K. J. Antibiot.  1967,  20:  270 
  • 4a Katoh A. Yoshida T. Ohkanda J. Heterocycles  2000,  52:  911 
  • 4b Thomas KRJ. Velusamy M. Lin JT. Chuen CH. Tao YT. Chem. Mater.  2005,  17:  1860 
  • 4c Dailey S. Feast WJ. Peace RJ. Sage IC. Till S. Wood EL. J. Mater. Chem.  2001,  11:  2238 
  • 5a Sessler JL. Maeda H. Mizuno T. Lynch VM. Furuta H. J. Am. Chem. Soc.  2002,  124:  13474 
  • 5b Crossley MJ. Johnston LA. Chem. Commun.  2002,  1122 
  • 5c Yamaguchi T. Matsumoto S. Watanabe K. Tetrahedron Lett.  1998,  39:  8311 
  • 6a Do H.-Q. Daugulis O. J. Am. Chem. Soc.  2008,  130:  1128 
  • 6b Lane BS. Brown MA. Sames D. J. Am. Chem. Soc.  2005,  127:  8050 
  • 6c Watanabe T. Ueda S. Inuki S. Oishi S. Fujii N. Ohno H. Chem. Commun.  2007,  4516 
  • 6d Wen J. Zhang J. Chen S.-Y. Li J. Yu X.-Q. Angew. Chem. Int. Ed.  2008,  47:  8897 
  • 7a Brasche G. Buchwald SL. Angew. Chem. Int. Ed.  2008,  47:  1932 
  • 7b Chen X. Hao X.-S. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc.  2006,  128:  6790 
  • 7c Inamoto K. Saito T. Katsuno M. Sakamoto T. Hiroya K. Org. Lett.  2007,  9:  2931 
  • 7d Thu H.-Y. Yu W.-Y. Che C.-M. J. Am. Chem. Soc.  2006,  128:  9048 
  • 7e Giri R. Chen X. Yu J.-Q. Angew. Chem. Int. Ed.  2005,  44:  2112 
  • 8a Desai LV. Ren DT. Rosner T. Org. Lett.  2010,  12:  1032 
  • 8b Desai LV. Stowers KJ. Sanford MS. J. Am. Chem. Soc.  2008,  130:  13285 
  • 8c Desai LV. Malik HA. Sanford MS. Org. Lett.  2006,  8:  1141 
  • 8d Kalyani D. Sanford MS. Org. Lett.  2005,  7:  4149 
  • 8e Dick AR. Hull KL. Sanford MS. J. Am. Chem. Soc.  2004,  126:  2300 
  • 8f Wang G.-W. Yuan T.-T. Wu X.-L. J. Org. Chem.  2008,  73:  4717 
  • 9 Yu J.-Q. Giri R. Chen X. Org. Biomol. Chem.  2006,  4:  4041 
  • 10 Reddy BVS. Reddy LR. Corey EJ. Org. Lett.  2006,  8:  3391 
11

Typical Experimental Procedure
A mixture of 2,3-diphenylquinoxaline (100 mg, 0.35 mmol), PhI(OAc)2 (250 mg, 0.78 mmol), and Pd(OAc)2 (4 mg, 0.05 mmol) in DCE (5 mL) was stirred at r.t. for 10 min, then the resulting mixture was heated to 90 ˚C for 12 h. After completion of reaction as indicated by TLC, the reaction mixture was filtered, diluted with H2O and extracted with CH2Cl2 (2 × 15 mL). The combined organic layers were dried over anhyd Na2SO4, concentrated in vacuo, and purified by column chromatography on silica gel (Merck, 60-120 mesh, EtOAc-hexane, 0.5:9.5) to afford pure bisacetoxy derivative.
Compound 3c: yellow solid, mp 143-144 ˚C. IR (KBr):
νmax = 3027, 2923, 2854, 1765, 1620, 1458, 1370, 1190, 1116, 1031, 909, 758 cm. ¹H NMR (300 MHz, CDCl3):
δ = 2.10 (s, 3 H), 2.48 (s, 3 H), 7.01-7.07 (m, 2 H), 7.24-7.30 (m, 2 H), 7.79 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 20.3, 20.8, 123.0, 125.5, 128.8, 129.8, 131.3, 131.4, 139.8, 140.0, 148.2, 149.7, 168.9. MS (EI): m/z = 449 [M + Na]. HRMS: m/z calcd for C26H22N2O4Na: 449.1477; found: 449.1475.
Compound 3e: yellow solid, mp 161-162 ˚C. IR (KBr):
νmax = 3029, 2922, 2852, 1769, 1715,1442, 1374, 1310, 1278, 1254, 1181, 1112, 1054, 1027, 907, 807 cm. ¹H NMR (300 MHz, CDCl3): δ = 2.09 (s, 3 H), 2.10 (s, 3 H), 4.03 (s, 3 H), 7.17 (m, 4 H), 7.41 (m, 4 H), 8.18 (s, 1 H), 8.39 (dd, 1 H, J = 1.8, 8.6 Hz), 8.85 (d, 1 H, J = 1.7 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 20.8, 20.9, 52.6, 123.2, 125.6, 129.4, 129.8, 130.3, 130.6, 130.7, 131.4, 131.6, 131.7, 140.1, 142.7, 148.3, 151.9, 152.7, 166.1, 168.7, 168.8. MS (EI): m/z = 479 [M + Na]. HRMS: m/z calcd for C26H20N2O6Na: 479.1219; found: 479.1202.
Compound 3j: pale yellow solid, mp 103-104 ˚C. IR (neat): νmax = 3020, 2923, 2852, 1764, 1646, 1544, 1488, 1448, 1369, 1312, 1187, 1108, 1034, 1010, 958, 912, 867, 764 cm. ¹H NMR (300 MHz, CDCl3): δ = 2.23 (s, 3 H), 7.21 (s, 1 H), 7.39-7.57 (m, 2 H), 7.74-7.80 (m, 2 H), 7.91 (dd, 2 H, J = 1.3, 6.2 Hz), 8.21 (m, 2 H), 9.10 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 20.9, 123.5, 128.1, 129.1, 129.4 129.5, 129.9, 130.2, 130.3, 130.9, 131.1, 141.1, 148.5, 150.8, 169.3. MS (EI): m/z = 287 [M + Na]. HRMS: m/z calcd for C16H12N2O2Na: 287.0796; found: 287.0784.