Abstract
Diaryl thioethers can be prepared via a copper-catalyzed cross-coupling
between aryl halides and thioacetamide using Cs2 CO3 as
a base and DMSO-H2 O as a solvent at 120 ˚C.
Key words
copper - catalysis - cross-coupling - diaryl
thioether - arylation - thioacetamide
References and Notes
<A NAME="RW14810ST-1A">1a </A>
Amorati R.
Fumo MG.
Menichetti S.
Mugnaini V.
Pedulli GF.
J. Org. Chem.
2006,
71:
6325
<A NAME="RW14810ST-1B">1b </A>
Liu G.
Link JT.
Pei ZH.
Reilly EB.
Leitza S.
Nguyen B.
Marsh KC.
Okasinski GF.
Von Geldern TW.
Ormes M.
Fowler K.
Gallatin M.
J. Med. Chem.
2000,
43:
4025
<A NAME="RW14810ST-1C">1c </A>
Liu G.
Huth JR.
Olejniczak ET.
Mendoza R.
DeVries P.
Leitza S.
Reilly EB.
Okasinski GF.
Fesik SW.
von Geldern TW.
J. Med. Chem.
2001,
44:
1202
<A NAME="RW14810ST-1D">1d </A>
Liu LP.
Stelmach JE.
Natarajan SR.
Chen MH.
Singh SB.
Schwartz CD.
Fitzgerald CE.
O’Keefe
SJ.
Zaller DM.
Schmatz DM.
Doherty JB.
Bioorg. Med. Chem. Lett.
2003,
13:
3979
<A NAME="RW14810ST-1E">1e </A>
Wang Y.
Clackalamannil S.
Chang W.
Greenlee VR.
Duffy RA.
McQuade R.
Lachowicz JE.
Bioorg. Med. Chem. Lett.
2001,
11:
891
<A NAME="RW14810ST-1F">1f </A>
Bonnet B.
Soullez D.
Girault S.
Maes L.
Landry V.
Davioud-Charvet E.
Sergheraert C.
Bioorg.
Med. Chem.
2000,
8:
95
<A NAME="RW14810ST-2A">2a </A>
Yamamoto T.
Sekine Y.
Can.
J. Chem.
1984,
62:
1544
<A NAME="RW14810ST-2B">2b </A>
Hickman RJS.
Christie BJ.
Guy RW.
White
TJ.
Aust. J. Chem.
1985,
38:
899
<A NAME="RW14810ST-2C">2c </A>
Van Bierbeek A.
Gingras M.
Tetrahedron Lett.
1998,
39:
6283
<A NAME="RW14810ST-3A">3a </A>
Migita T.
Shimizu T.
Asami Y.
Shiobara J.
Kato Y.
Kosugi M.
Bull.
Chem. Soc. Jpn.
1980,
53:
1385
<A NAME="RW14810ST-3B">3b </A>
Kosugi M.
Ogata T.
Terada M.
Sano H.
Migita T.
Bull. Chem.
Soc. Jpn.
1985,
58:
3657
<A NAME="RW14810ST-3C">3c </A>
Zheng N.
McWilliams JC.
Fleitz FJ.
Armstrong JD.
Volante RP.
J. Org. Chem.
1998,
63:
9606
<A NAME="RW14810ST-3D">3d </A>
Mann G.
Baranano D.
Hartwig JF.
Rheingold AL.
Guzei IA.
J. Am. Chem. Soc.
1998,
120:
9205
<A NAME="RW14810ST-3E">3e </A>
Murata M.
Buchwald SL.
Tetrahedron
2004,
60:
7397
<A NAME="RW14810ST-3F">3f </A>
Schopfer U.
Schlapbach A.
Tetrahedron
2001,
57:
3069
<A NAME="RW14810ST-3G">3g </A>
Li
YG.
Angew. Chem. Int. Ed.
2001,
40:
1513
<A NAME="RW14810ST-3H">3h </A>
Itoh T.
Mase T.
Org. Lett.
2004,
6:
4587
<A NAME="RW14810ST-3I">3i </A>
Mispelaere-Canivet C.
Spindler J.-F.
Perrio S.
Beslin P.
Tetrahedron
2005,
61:
5253
<A NAME="RW14810ST-3J">3j </A>
Fernandez-Rodriguez MA.
Shen Q.
Hartwig JF.
J. Am. Chem. Soc.
2006,
128:
2180
<A NAME="RW14810ST-3K">3k </A>
Fernandez-Rodriguez MA.
Shen Q.
Hartwig JF.
Chem. Eur. J.
2006,
12:
7782
<A NAME="RW14810ST-3L">3l </A>
Fernandez-Rodriguez
MA.
Hartwig JF.
Chem.
Eur. J.
2010,
16:
2355
<A NAME="RW14810ST-4A">4a </A>
Cristau HJ.
Chabaud B.
Chene A.
Christol H.
Synthesis
1981,
892
<A NAME="RW14810ST-4B">4b </A>
Percec V.
Bae J.-Y.
Hill DH.
J.
Org. Chem.
1995,
60:
6895
<A NAME="RW14810ST-4C">4c </A>
Millois C.
Diaz P.
Org. Lett.
2000,
2:
1705
<A NAME="RW14810ST-4D">4d </A>
Yatsumonji Y.
Okada O.
Tsubouchi A.
Takeda T.
Tetrahedron
2006,
62:
9981
<A NAME="RW14810ST-4E">4e </A>
Zhang Y.
Ngeow KC.
Ying JY.
Org.
Lett.
2007,
9:
3495
<A NAME="RW14810ST-4F">4f </A>
Jammi S.
Barua P.
Rout L.
Saha P.
Punniyamurthy T.
Tetrahedron
Lett.
2008,
49:
1484
<A NAME="RW14810ST-5">5 </A>
Wong Y.-C.
Jayanth TT.
Cheng C.-H.
Org.
Lett.
2006,
8:
5613
<A NAME="RW14810ST-6A">6a </A>
Wu Y.-J.
He H.
Synlett
2003,
1789
<A NAME="RW14810ST-6B">6b </A>
Deng W.
Zou Y.
Wang Y.-F.
Liu L.
Guo Q.-X.
Synlett
2004,
1254
<A NAME="RW14810ST-6C">6c </A>
Chen Y.-J.
Chen H.-H.
Org. Lett.
2006,
8:
5609
<A NAME="RW14810ST-6D">6d </A>
Rout L.
Sen TK.
Punniyamurthy T.
Angew.
Chem. Int. Ed.
2007,
46:
5583
<A NAME="RW14810ST-6E">6e </A>
Ranu BC.
Saha A.
Jana R.
Adv.
Synth. Catal.
2007,
349:
2690
<A NAME="RW14810ST-6F">6f </A>
Buranaprasertsuk P.
Chang JWW.
Chavasiri W.
Chan PWH.
Tetrahedron Lett.
2008,
49:
2023
<A NAME="RW14810ST-6G">6g </A>
Carril M.
Sanmartin R.
Dominguez E.
Tellitu I.
Chem. Eur. J.
2007,
13:
5100
<A NAME="RW14810ST-6H">6h </A>
Lv X.
Bao W.
J. Org. Chem.
2007,
72:
3863
<A NAME="RW14810ST-6I">6i </A>
Rout L.
Saha P.
Jammi S.
Punniyamurthy T.
Eur. J. Org. Chem.
2008,
640
<A NAME="RW14810ST-6J">6j </A>
Sperotto E.
Klink GPMV.
Vries JGD.
Koten GV.
J.
Org. Chem.
2008,
73:
5625
<A NAME="RW14810ST-6K">6k </A>
She J.
Jiang Z.
Wang Y.-G.
Tetrahedron
Lett.
2009,
50:
593
<A NAME="RW14810ST-6L">6l </A>
Prasad DJC.
Naidu AB.
Sekar G.
Tetrahedron Lett.
2009,
50:
1411
<A NAME="RW14810ST-6M">6m </A>
Jiang Y.-W.
Qin Y.-X.
Xie S.-W.
Zhang X.-J.
Dong J.-H.
Ma D.-W.
Org. Lett.
2009,
11:
5250
<A NAME="RW14810ST-6N">6n </A>
Ma D.-W.
Xie S.-W.
Xue P.
Zhang X.-J.
Dong J.-H.
Jiang Y.-W.
Angew. Chem. Int. Ed.
2009,
48:
4222
<A NAME="RW14810ST-7">7 </A>
Correa A.
Carril M.
Bolm C.
Angew.
Chem. Int. Ed.
2008,
47:
2880
<A NAME="RW14810ST-8">8 </A>
Firouzabadi H.
Iranpoor N.
Gholinejad M.
Adv.
Synth. Catal.
2010,
352:
119
Our recent work about copper-catalyzed
arylation of nucleophiles:
<A NAME="RW14810ST-9A">9a </A>
Tao C.-Z.
Liu W.-W.
Lv A.-F.
Sun M.-M.
Tian Y.
Wang Q.
Zhao J.
Synlett
2010,
1355
<A NAME="RW14810ST-9B">9b </A>
Tao C.-Z.
Liu W.-W.
Sun J.-Y.
Cao Z.-L.
Li H.
Zhang Y.-F.
Synthesis
2010,
1280
<A NAME="RW14810ST-9C">9c </A>
Tao C.-Z.
Liu
W.-W.
Sun J.-Y.
Chin.
Chem. Lett.
2009,
20:
1170
<A NAME="RW14810ST-9D">9d </A>
Tao C.-Z.
Li J.
Fu Y.
Liu L.
Guo Q.-X.
Tetrahedron
Lett.
2008,
49:
70
<A NAME="RW14810ST-9E">9e </A>
Tao C.-Z.
Cui X.
Li J.
Liu A.-X.
Liu L.
Guo Q.-X.
Tetrahedron
Lett.
2007,
48:
3525
<A NAME="RW14810ST-9F">9f </A>
Tao C.-Z.
Li J.
Cui X.
Fu Y.
Guo Q.-X.
Chin. Chem.
Lett.
2007,
18:
1199
<A NAME="RW14810ST-10A">10a </A>
Barber H.
Grzeskowiak E.
Anal.
Chem.
1949,
21:
192
<A NAME="RW14810ST-10B">10b </A>
Armstrong AR.
J. Chem. Educ.
1960,
37:
413
<A NAME="RW14810ST-10C">10c </A>
Walper JF.
Tucker FL.
Appleman MD.
Anal. Biochem.
1962,
3:
298
<A NAME="RW14810ST-10D">10d </A>
Gong J.-Y.
Yu S.-H.
Qian
H.-S.
Luo L.-B.
Liu X.-M.
Chem.
Mater.
2006,
18:
2012
<A NAME="RW14810ST-10E">10e </A>
Wu H.-Q.
Wang Q.-Y.
Yao Y.-Z.
Qian C.
Zhang X.-J.
Wei X.-W.
J. Phys. Chem. C
2008,
112:
16779
<A NAME="RW14810ST-10F">10f </A>
Li Y.-X.
Hu Y.-F.
Peng S.-Q.
Lu G.-X.
Li S.-B.
J.
Phys. Chem. C
2009,
113:
9352
<A NAME="RW14810ST-11">11 </A>
Coupling of Aryl
Halides with Thioacetamide - General Procedure
An
oven-dried Schlenk tube was charged with CuI (18 mg, 10 mol%),
MeCSNH2 (75 mg, 1.0 mmol), Cs2 CO3 (978
mg, 3.0 mmol), and aryl halide (2.5 mmol). The tube was evacuated
and backfilled with argon. Then, DMSO-H2 O (0.5
mL/0.25 mL) were added under argon. The tube was sealed,
and the reaction mixture was stirred at 120 ˚C for 24-36
h. The reaction mixture was quenched with H2 O, extracted
with Et2 O, and dried over anhyd MgSO4 . The solvents
were removed under vacuum, and the residue was purified by column
chromatography (silica gel, EtOAc-PE) to afford the product.
<A NAME="RW14810ST-12A">12a </A>
Basta-Kaim A.
Budziszewska B.
Jaworska-Feil L.
Tetich M.
Kubera M.
Leśkiewicz M.
Otczyk M.
Lasoń W.
Neuropsychopharmacology
2006,
31:
853
<A NAME="RW14810ST-12B">12b </A>
Dahl T.
Tornoe CW.
Bang-Andersen B.
Nielsen P.
Jorgensen M.
Angew.
Chem. Int. Ed.
2008,
47:
1726
<A NAME="RW14810ST-12C">12c </A>
Ma D.-W.
Geng Q.
Zhang H.
Jiang Y.-W.
Angew. Chem. Int. Ed.
2010,
49:
1291
<A NAME="RW14810ST-13A">13a </A>
Yang C.-T.
Fu Y.
Huang Y.-B.
Yi J.
Guo Q.-X.
Liu L.
Angew. Chem. Int. Ed.
2009,
48:
7398
<A NAME="RW14810ST-13B">13b </A>
Zhang S.-L.
Liu L.
Fu Y.
Guo Q.-X.
Organometallics
2007,
26:
4546