RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259075
Safe and Efficient Ritter Reactions in Flow
Publikationsverlauf
Publikationsdatum:
25. November 2010 (online)

Abstract
Efficient mixing, temperature control and small environmental exposures allow reactions carried out in microfluidic devices to perform superior to their batch-type counterparts in conventional flasks. The Ritter reaction has been optimised for flow conditions leading to short reaction times and higher yields and also is more feasible with regards to safety, productivity and tolerance towards substrate functionalities.
Key words
amide - carbocation - microreactor - Ritter Reaction - safety
- 1a
Microreactors in Organic Synthesis and Catalysis
Wirth T. Wiley-VCH; Weinheim: 2008.Reference Ris Wihthout Link - 1b
Flash Chemistry
Yoshida J.-I. Wiley; Chichester: 2008.Reference Ris Wihthout Link - 2
Bishop R. In Comprehensive Organic Synthesis Vol. 6:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.261-300 - 3
Lebedev MY.Erman MB. Tetrahedron Lett. 2002, 43: 1397 - 4a
Chang S.-J. Org. Process Res. Dev. 1999, 3: 232Reference Ris Wihthout Link - 4b
Baum JC.Milne JE.Murray JA.Thiel OR.
J. Org. Chem. 2009, 74: 2207Reference Ris Wihthout Link - 5a
Sanz R.Martínez A.Guilarte V.Álvarez-Gutierrez JM.Rodrígez F. Eur. J. Org. Chem. 2007, 4642Reference Ris Wihthout Link - 5b
Veverková E.Toma S. Chem. Pap. 2005, 59: 8Reference Ris Wihthout Link - 6
Rubenbauer P.Bach T. Chem. Commun. 2009, 2130 - 7
Baumann M.Baxendale IR.Martin LJ.Ley SV. Tetrahedron 2009, 65: 6611Reference Ris Wihthout Link - 8
Ritter JJ.Minieri PP. J. Am. Chem. Soc. 1948, 70: 4045 - 9
Poechlauer P,Kotthaus M,Vorbach M,Deak M,Zich T, andMarr R. inventors; PCT Int. Appl. WO 2006125502.Reference Ris Wihthout Link - 10
Szmant HH. Organic Building Blocks of the Chemical Industry John Wiley & Sons; New York: 1989. - 13
Jirgensons A.Kauss V.Kalvinsh I.Gold MR. Synthesis 2000, 1709 - 14
Ge Y.Hu L. Tetrahedron Lett. 2007, 48: 4585 - 15
Kato T.Reed CA. Angew. Chem. Int. Ed. 2004, 43: 2908 - 16a
Hudson CE.McAdoo DJ. Int. J. Mass Spectrom. 2002, 214: 315Reference Ris Wihthout Link - 16b
Traeger JC.McAdoo DJ.Hudson CE.Giam CS. J. Am. Soc. Mass Spectrom. 1998, 9: 21Reference Ris Wihthout Link - 16c
Bowen RD.Harrison AG. Org. Mass Spectrom. 1981, 16: 180Reference Ris Wihthout Link - 16d
Wendelboe JF.Bowen RD.Williams DH. J. Am. Chem. Soc. 1981, 103: 2333Reference Ris Wihthout Link - 17a
Xu T.Haw JF. J. Am. Chem. Soc. 1994, 116: 7753Reference Ris Wihthout Link - 17b
Lercher JA.van Santen RA.Vinek H. Catal. Lett. 1994, 27: 91Reference Ris Wihthout Link - 17c
Yang S.Kondo JN.Domen K. Chem. Commun. 2001, 2008Reference Ris Wihthout Link - 18a
Boronat M.Corma A. Appl. Catal. A 2008, 336: 2Reference Ris Wihthout Link - 18b
Kotrel S.Knözinger H.Gates BC. Microporous Mesoporous Mater. 2000, 35-36: 11Reference Ris Wihthout Link - 18c
Hunter KC.East ALL. J. Phys. Chem. A 2002, 106: 1346Reference Ris Wihthout Link - 18d
Williams BA.Ji W.Miller JT.Snurr RQ.Kung HH. Appl. Catal. A 2000, 203: 179Reference Ris Wihthout Link - 19
Olah GA.Prakash GKS.Rasul G. Dalton Trans. 2008, 521
References and Notes
The micromixing device ‘Comet X-01’, available from Techno Applications Co., Ltd, 34-16-204, Hon, Denenchofu, Oota, Tokyo 145-0072, Japan, was used.
12Syringe A was loaded with 85% H2SO4 (5
mL). Syringe B was loaded with alcohol (6 mmol) and nitrile (6 mmol), diluted
with acetic acid to 5 mL. The PTFE micromixer and the attached PTFE
tubing (2 m, 0.5 mm inner diameter) were inserted into the heating
bath and the temperature was adjusted to 45 ˚C (85 ˚C
for secondary alcohols). The flow rate was set at 0.1 mL/min
(reaction time: 3 min). The crude product was quenched by dropping
into excess of ice-2 M NaOH. After the reaction, the tube
was flushed with EtOAc and the crude mixture was washed with aq
2 M NaOH (80 mL) and EtOAc (3 × 100 mL). The organic layers
were combined, dried over MgSO4 and the solvent was removed under
reduced pressure.
Selected Spectroscopic
Data:
3,3′-Oxybis[N-(tert-butyl)propanamide] (13): ¹H NMR (500 MHz,
CDCl3): δ = 1.31 (s, 18 H, Me), 2.34
(t, 4 H, J = 6.0 Hz, CH2),
3.66 (t, 4 H, J = 6.0 Hz, CH2),
5.85 (s, 2 H, NH). ¹³C NMR (125 MHz,
CDCl3): δ = 28.8, 37.8, 51.0, 67.1, 170.2.
EI-MS: m/z (%) = 272 [M+](3),
257 (48), 242 (6), 229 (3), 217 (49), 207 (7), 200(100), 183 (18).
HRMS: m/z [M + H]+ calcd
for C14H29N2O3: 273.2173;
found: 273.2177. IR (neat): 3549, 3460, 3330, 3067, 2979, 2927,
2897, 1664, 1639, 1547, 1455, 1361, 1227, 1109 cm-¹.
N-(tert-Butyl)-2-(2-iodophenyl)acetamide
(14): ¹H NMR (500 MHz,
CDCl3): δ = 1.31 (s, 9 H, Me), 3.61
(s, 2 H, CH2), 5.22 (s, 1 H, NH), 6.98 (m, 1 H, ArH),
7.34 (m, 2 H, ArH), 7.86 (d, 1 H, J = 7.7
Hz, ArH). ¹³C NMR (125 MHz, CDCl3): δ = 28.7,
49.6, 51.4, 101.0, 128.8, 128.9, 130.8, 138.8, 139.8, 168.6. EI-MS: m/z (%) = 318 [M+](4),
302 (13), 281 (4), 262 (28), 244 (100), 232 (6). HRMS: m/z [M + H]+ calcd
for C12H17INO: 318.0349; found: 318.0349.
IR (neat): 3378, 3276, 2972, 2960, 1643, 1552, 1466, 1448, 1417,
1360, 1341, 1288, 1259, 1155, 1014 cm-¹.