Synlett 2010(20): 3086-3088  
DOI: 10.1055/s-0030-1259074
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Convergent Approach to Nonsymmetrical 2,5-Diester Pyrroles

Éric Lévesque, Louis-Charles Campeau, Danny Gauvreau*
Merck Frosst, Centre for Therapeutic Research, Department of Process Research, 16711 Trans Canada Highway, Kirkland, Québec, H9H 3L1, Canada
Fax: +1(514)4284939; e-Mail: danny_gauvreau@merck.com;
Further Information

Publication History

Received 6 October 2010
Publication Date:
25 November 2010 (online)

Abstract

A convergent approach towards nonsymmetrical 2,5-diester pyrroles is described. The building blocks can be easily assembled in less than four steps allowing for facile construction of diversity. The synthesis uses a rhodium-catalyzed NH insertion, followed by a one-pot deprotection-condensation to yield the desired pyrroles.

    References and Notes

  • 1a For examples of natural products bearing a pyrrole: Gupton JT. Topics in Heterocyclic Chemistry   Vol. 2:  Lee M. Springer; Berlin: 2006.  p.53 
  • 1b Roth BD. inventors; US Patent  4681893. For drugs containing a pyrrole, one of the best-known examples is Lipitor®:
  • For a recent review on pyrrole synthesis:
  • 2a Schmuck C. Rupprecht D. Synthesis  2007,  3095 
  • 2b Ferreira VF. De Souza MC. Cunha AC. Pereira LOR. Ferreira MLG. Org. Prep. Proced. Int.  2001,  33:  411 
  • 3a Schmuck C. Geiger L. J. Am. Chem. Soc.  2004,  126:  8898 
  • 3b Hekmatshoar R. Nouri R. Beheshtiha S. Heteroat. Chem.  2008,  19:  100 
  • 3c Beckert R. Buehrdel G. Herzigova P. Petrlikova E. Schuch D. Birckner E. Goerls H. Eur. J. Org. Chem.  2009,  3404 
  • 3d Gupton JT. Giglio BC. Eaton JE. Rieck EA. Smith KL. Keough MJ. Barelli PJ. Firich LT. Hempel JE. Smith TM. Kanters RPF. Tetrahedron  2009,  65:  4283 
  • 3e Takamura N. Yasui E. Mada M. Tetrahedron Lett.  2009,  50:  4762 
  • 3f Ciez D. Org. Lett.  2009,  11:  4282 
  • 3g Jiang H. Lui W. Huang L. Org. Lett.  2010,  12:  312 
  • 5 Baum JS. Shook DA. Davies HML. Smith HD. Synth. Commun.  1987,  17:  1709 
  • The stereochemistry of compounds 7 and 8 was not determined since it is irrelevant for the later chemistry. Opposite stereochemistry have been assigned to analogous enamines in literature:
  • 6a Yamada M. Nakao K. Fukui T. Nunami K. Tetrahedron  1996,  52:  5751 
  • 6b Das J. Reid JA. Kronenthal DR. Singh J. Pansegrau PD. Mueller RH. Tetrahedron Lett.  1992,  33:  7835 
  • 6c Singh J. Kronenthal DR. Schwinden M. Godfrey JD. Fox R. Vawter EJ. Zhang B. Kissick TP. Patel B. Mneimne O. Humora M. Papaioannou CG. Szymanski W. Wong MKY. Chen CK. Heikes JE. DiMarco JD. Qiu J. Deshpande RP. Gougoutas JZ. Mueller RH. Org. Lett.  2003,  3155 
  • 6d Queiroz M.-J. Monteiro LS. Silva NO. Abreu AS. Ferreira PMT. Eur.
    J. Org. Chem.  2002,  2524 
  • 7a Thiophenol removal: Hamel P. Girard Y. Atkinson JG. J. Chem. Soc., Chem. Commun.  1989,  63 
  • 7b Bromide removal: Chang MN. Biftu T. Boulton DA. Finke PE. Hammond ML. Pessolano AA. Zambias RA. Bailey P. Goldenberg M. Rackham A. Eur. J. Med. Chem.  1986,  363 
  • 8a Sowerby RL. Coates RM. J. Am. Chem. Soc.  1972,  4758 
  • 8b Kuwajima I. Sato S.-J. Kurata Y. Tetrahedron Lett.  1972,  737 
4

No pyrrole was observed when the keto enamine 2a was submitted under thermal or dehydrating conditions in the absence of zinc.

9

Optimization of the deprotection-cyclization involved screening for organic solvents, aqueous solvent (pH 1-14 buffer), metal used, quantity of zinc, temperature, and reaction time.

10

General Procedure for the Synthesis of Compounds 2a-i To a stirred solution of 8 (1.70 mmol) and Rh2(oct)4 (0.085 mmol) in CH2Cl2 (4 mL) at 20 ˚C was added a solution of 4 (3.40 mmol) in CH2Cl2 (2 mL) over a period of 20 min. The mixture was stirred for 1 h; gas evolution was observed. The reaction mixture was partitioned between CH2Cl2 and a sat. NaHCO3 solution, back extracted with CH2Cl2. Combined organic layers were washed with brine, dried over MgSO4, and concentrated under vacuum. Purification by flash chromatography (silica gel, 230-400 mesh; Merck) using hexanes-EtOAc yielded 2 as a pure product.
Methyl 2-{(1-Ethoxy-1,3-dioxo-3-phenylpropan-2-yl)[(2,2,2-trichloroethoxy)carbonyl]amino}-3-(phenylthio)acrylate (2a) ¹H NMR (400 MHz, acetone-d 6): δ = 8.12 (br, 1 H), 7.58-7.51 (m, 2 H), 7.53-7.45 (m, 3 H), 7.45-7.39 (m, 2 H), 7.38-7.30 (m, 2 H), 7.30-7.24 (m, 2 H), 4.83 (s, 2 H), 3.78 (q, J = 7.1 Hz, 2 H), 3.60 (s, 3 H), 0.79 (t, J = 7.1 Hz, 3 H) ppm. ¹³C NMR (101 MHz, acetone-d 6): δ = 165.9, 165.0, 159.8, 153.3, 149.7, 134.7, 133.7, 131.6, 131.1, 130.0, 129.7, 129.6, 128.1, 114.9, 112.3, 96.7, 75.2, 61.9, 52.1, 13.8 ppm. IR (neat): 3311 (br), 2982, 1715, 1439, 1268, 1179, 1128, 1034, 732. ESI-HRMS: m/z calcd for C24H22Cl3NNaO7S
[M + Na]: 598.0049; found: 598.0044.
General Procedure for the Synthesis of Compounds 1a-i
To a stirred solution 2 (0.35 mmol) in 2-PrOH (3.5 mL) and H2O (0.627 mL, 35 mmol) was added zinc (228 mg, 3.5 mmol). Mixture was heated to 60 ˚C and stirred for 24 h. The suspension was filtered on Celite, then concentrated under vacuum. Purification by flash chromatography (silica gel, 230-400 mesh; Merck) using hexanes-EtOAc yielded 1 as a pure product.
2-Ethyl 5-Methyl 3-Phenyl-1 H -pyrrole-2,5-dicarboxylate (1a)
¹H NMR (400 MHz, acetone-d 6): δ = 11.43 (br, 1 H), 7.69-7.65 (m, 2 H), 7.42-7.39 (m, 3 H), 7.30 (s, 1 H), 4.16 (q, J = 7.1 Hz, 2 H), 3.81 (s, 3 H), 1.22 (t, J = 7.1 Hz, 3 H) ppm. ¹³C NMR (101 MHz, acetone-d 6): δ = 164.2, 161.3, 141.7, 131.9, 130.6, 129.5, 128.5, 123.3, 118.8, 114.7, 60.2, 51.8, 14.5 ppm. IR (neat): 3706 (br), 3306, 2973, 1692, 1467, 1249, 1143, 1035, 757, 687. ESI-HRMS: m/z calcd for C15H16NO4 [M + H]: 274.1074; found: 274.1077.