Synlett 2010(20): 3061-3064  
DOI: 10.1055/s-0030-1259052
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A New and Efficient Total Synthesis of (±)-Laurencenone C

Kuo-Ching Chua, Hsing-Jang Liu*a, Jia-Liang Zhu*b
a Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of China
Fax: +886(3)35665; e-Mail: hjliu@mx.nthu.edu.tw;
b Department of Chemistry, National Dong-Hwa University, Hualien 974, Taiwan, Republic of China
Fax: +886(3)8633570; e-Mail: jlzhu@mail.ndhu.edu.tw;
Weitere Informationen

Publikationsverlauf

Received 14 September 2010
Publikationsdatum:
17. November 2010 (online)

Abstract

A novel total synthesis of laurencenone C, a chamigrene sesquitepenoid natural product, has been accomplished in 11 steps. In the synthetic sequence, the B-ring of the spirocyclic core was constructed by a one-pot operation involving a Knoevenagel condensation between ethyl cyanoacetate and paraformaldehyde combined with a Diels-Alder reaction of the resulting ethyl 2-cyanoacrylate with isoprene. Moreover, a lithium naphthalenide-induced reductive alkylation of the Diels-Alder adduct was employed to create the C-6 quaternary center and to set the stage for assembling the A-ring.

    References and Notes

  • For examples of isolations of chemigrenes, see:
  • 1a Erickson KL. In Marine Natural Products: Chemical and Biological Perspectives   Vol. 5:  Scheuer PJ. Academic Press; New York: 1990.  p.131-257  
  • 1b Attaway DH. Zaborsky OR. In Marine Biotechnology: Pharmaceutical and Bioactive Natural Products   Plenum Press; London: 1993.  p.333-334  
  • 1c Sim JJ. Lin GH. Wing RM. Tetrahedron Lett.  1974,  15:  3487 
  • 1d Kikuchi H. Suzuki T. Suzuki M. Kurosawa E. Bull. Chem. Soc. Jpn.  1985,  58:  2473 
  • 1e Elsworth JF. J. Nat. Prod.  1989,  52:  893 
  • 1f Rashid MA. Gustafson KR. Gardellina JH. Boyd MR. Nat. Prod. Lett.  1995,  6:  255 
  • 1g Francisco MEY. Erickson KL. J. Nat. Prod.  2001,  64:  790 
  • 1h Dorta E. Díaz-Marrero AR. Cueto M. D’Croz L. Maté JL. Darias J. Tetrahedron Lett.  2004,  45:  7065 ; and references cited therein
  • 2a Kennedy DJ. Selby IA. Thomson RH. Phytochemistry  1988,  27:  1761 
  • 2b For the isolation of laurencenone C from the other natural source, see: Asakawa Y. Tori M. Masuya T. Frahm J.-P. Phytochemistry  1990,  29:  1577 
  • For examples on total syntheses of chamigrenes, see:
  • 3a Wolinsky LE. Faulkner DJ. J. Org. Chem.  1976,  41:  597 
  • 3b Martin JD. Pérez C. Ravelo JL. J. Am. Chem. Soc.  1986,  108:  7801 
  • 3c Niwa H. Yoshida Y. Hasegawa T. Yamada K. Tetrahedron  1991,  47:  2155 
  • 3d White DE. Stewart IC. Crubbs RH. Stoltz BM. J. Am. Chem. Soc.  2008,  130:  810 
  • 3e Cui Q. Kang L. Yang HS. Xu XH. Chin. Chem. Lett.  2009,  554 ; and references cited therein
  • 4 Hatsui T. Wang J. Takeshita H. Bull. Chem. Soc. Jpn.  1994,  67:  2507 
  • 5 Chen YJ. Wang CY. Lin WY. Tetrahedron  1996,  52:  13181 
  • 6 Srikrishna A. Lakshmi BV. Mathews M. Tetrahedron Lett.  2006,  47:  2103 
  • 7 Srikrishna A. Babu RR. Tetrahedron  2008,  64:  10501 
  • 8 White DE. Stewart IC. Seashore-Ludlow BA. Grubbs RH. Stoltz BM. Tetrahedron  2010,  66:  4668 
  • 9 Shia KS. Chang NY. Yip J. Liu HJ. Tetrahedron Lett.  1998,  39:  7713 
  • 10 Khalafallah AK. Elal RMA. Kanzi NAA. Heterocycl. Commun.  2002,  397 
  • 11 De Keyser J.-L. De Cock CJC. Poupaert JH. Dumont P. J. Org. Chem.  1998,  53:  4859 
  • 12 For preparing a stock solution of LN, see: Liu HJ. Yip J. Shia KS. Tetrahedron Lett.  1997,  38:  2253 
  • 13 Yefidoff R. Albeck A. Tetrahedron  2004,  60:  8093 
  • 15 Mehta G. Nandakumar J. Tetrahedron Lett.  2001,  42:  7667 
  • 16 Asao N. Lee S. Yamamoto Y. Tetrahedron Lett.  2003,  44:  4265 
  • 17 The spectral data of 1 are as follows. IR (neat): 3023, 2960, 2932, 1668, 1610, 1445 cm; ¹H NMR (CDCl3, 400 MHz): δ = 5.77 (s, 1 H), 5.41 (s, 1 H), 2.53 (d, J = 18.2 Hz, 1 H), 2.15 (d, J = 18.2 Hz, 1 H), 1.88 (s, 3 H), 1.98-1.91 (m, 2 H), 1.82-1.78 (m, 2 H), 1.68-1.64 (m, 2 H), 1.59 (s, 3 H), 0.94 (s, 3 H), 0.86 (s, 3 H); ¹³C NMR (CDCl3, 100 MHz): δ = 198.5 (C), 170.3 (C), 133.9 (C), 126.8 (CH), 121.4 (CH), 48.8 (CH2), 43.2 (C), 40.2 (C), 30.5 (CH2), 28.1 (CH2), 27.8 (CH2), 24.7 (CH3), 24.1 (CH3), 23.7 (CH3), 23.2 (CH3); HRMS (EI): m/z [M]+ calcd for C15H22O: 218.1671; found: 218.1669.The spectral data of the key intermediate 4 are as follows. IR (neat): 3035, 2960, 2912, 1674, 1447 cm; ¹H NMR (CDCl3, 600 MHz): δ = 6.67-6.64 (m, 1 H, major), 6.63-6.61 (m, 1 H, minor), 5.87-5.82 (m, 2 H), 5.31 (d, J = 1.3 Hz, 1 H, minor), 5.26 (d, J = 1.5 Hz, 1 H, major), 2.69 (ddt, J = 17.7, 5.4, 2.7 Hz, 1 H, minor), 2.55 (ddt, J = 20, 5.5, 2.8 Hz, 1 H, major), 2.46-2.43 (m, 1 H, minor), 2.19-2.17 (m, 2 H), 2.13-2.04 (m, 4 H), 1.92-1.64 (m, 9 H), 1.59-1.57 (m, 6 H), 0.91-0.86 (m, 6 H); ¹³C NMR (CDCl3, 150 MHz): δ (major) = 204.6 (C), 145.8 (CH), 133.5 (C), 128.3 (CH), 118.2 (CH), 46.7 (C), 35.8 (CH), 37.5 (CH2), 31.2 (CH2), 26.5 (CH2), 24.3 (CH2), 23.2 (CH3), 15.5 (CH3). ¹³C NMR δ (minor) = 203.9 (C), 145.0 (CH), 132.1 (C), 127.9 (CH), 119.0 (CH), 47.5 (C), 32.4 (CH), 31.5 (CH2), 29.6 (CH2), 28.9 (CH2), 27.9 (CH2), 23.2 (CH3), 15.5 (CH3); HRMS (EI): m/z [M]+ calcd for C13H18O: 190.1358; found: 190.1362.The spectral data of the key intermediate 6 are as follows. IR (neat): 2957, 2929, 2857, 1726, 1447 cm; ¹H NMR (CDCl3, 600 MHz): δ = 5.28 (br s, 2 H), 4.06-4.03 (m, 4 H), 3.61-3.59 (m, 2 H), 3.51-3.48 (m, 2 H), 2.44-2.36 (m, 2 H), 1.96-1.72 (m, 14 H), 1.60 (s, 6 H), 1.17-1.15 (m, 6 H), 1.10-1.02 (m, 2 H), 0.84-0.81 (m, 24 H), -0.02 to -0.03 (m, 12 H); ¹³C NMR (CDCl3, 150 MHz): δ = 175.8 (C), 175.7 (C), 133.0 (C), 132.9 (C), 119.8 (CH), 119.6 (CH), 61.6 (CH2), 61.5 (CH2), 59.8 (CH2), 48.3 (C), 36.3 (CH), 36.1 (CH), 29.6 (CH2), 29.4 (CH2), 28.6 (CH2), 28.5 (CH2), 28.0 (CH2), 27.9 (CH2), 25.8 (CH3), 23.1 (CH3), 18.2 (C), 14.7 (CH3), 14.1 (CH3), 13.9 (CH3), -5.35 (CH3), -5.43 (CH3); HRMS (EI): m/z [M]+ calcd for C20H38O3Si: 354.2590; found: 354.2593.The spectral data of the key intermediate 11 are as follows. IR (neat): 2920, 1651, 1614 cm; mp 106.3-107.6 ˚C; ¹H NMR (CDCl3, 600 MHz): δ = 5.96 (s, 2 H), 5.46 (t, J = 1.6 Hz, 1 H), 2.13-2.11 (m, 2 H), 2.03-2.01 (m, 2 H), 1.95 (s, 6 H), 1.67-1.65 (m, 5 H); ¹³C NMR (CDCl3, 150 MHz): δ = 185.9 (C), 166.5 (C), 133.5 (C), 126.8 (2CH), 119.5 (CH), 44.1 (C), 31.9 (CH2), 29.5 (CH2), 27.3 (CH2), 23.4 (CH3), 21.4 (CH3), 21.3 (CH3); HRMS (EI): m/z [M]+ calcd for C14H18O: 202.1358; found: 202.1358cc
14

The relative stereochemistry of two diastereoisomers remains to be determined.